978 resultados para biological species
Phylum-wide transcriptome analysis of oogenesis and early embryogenesis in selected nematode species
Resumo:
Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.
Resumo:
XIMENES, Maria de Fátima Freire de Melo; MACIEL, Janaína Cunha; JERONIMO, Selma Maria Bezerra. Characteristics of the Biological Cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (diptera: psychodidae) under experimental conditions. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro, v.96, n.6, p.883-886, ago. 2001. Disponivel em:
Resumo:
The interest of scientific community on carbon-based smart materials is growing and, especially focus on graphene oxide (GO) and reduced graphene oxide (rGO). An increasing number of bio-applications such as biological applications as bacterial inhibition, drug delivery and photothermal therapy aims the use of GO and rGO. For this reason, the methods used for the synthesis of graphene materials are more important because same of those procedures imply chemical reactions that involve hazardous and toxic reagents. In fact, the biocompatibility and toxicological activity of graphene-related materials is related to the methodologies employed for the synthesis that determine the carbon/oxygen (C/O) ratio of graphene oxide species. In this technical report, we focused on the synthesis of GO by means of that lead to a biocompatible GO form with a lower oxygen content. Thus, the synthesis of rAsGFP-rGO with the green fluorescent protein allowed us to obtain a biocompatible materials, without using hazardous and toxic reagents. This biocompatibility is the most important prerogative for the use of GO in biological activity assays as reported in several publications.
Resumo:
There is little doubt that the exploitation of the current fisheries of Lakes Victoria and Kyoga requires close monitoring with a view to enforce adherence to prudent management practices. Many indigenous fishes have gradually disappeared from the commercial fishery of both lakes. In the Uganda portion of Lake Victoria for instance Okaronon and Wadanya (in press) have shown that:- 1. The once preponderant haplochromiine taxon ceased to feature in the commercial catches in 1979. 2. The lung-fish (Protopterus aethiopicus) which formerly contributed significantly to the commercial landings had declined to minor species status by the mid 1980s. 3. The catfishes Clarias mossambicus and Bagrus docmac, formerly major fish species, contributed insignificant quantities to the commercial fishery since the early and mid 1980s, respectively. Similar trend have been "reported in the Kenya and Tanzania portions of Lake Victoria (Bwathondi, 1985; Mainga, 1985, Witte and Goudswaard, 1985). On the other hand since their establishment all round the lake in the early to mid 1980s some introduced fishes namely Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) built up impressive stocks in Lake Victoria (Ssentongo and Welcomme, 1985, Okaronon et al. 1985; Okaronon and Wadanya, in press). Togetther with the native pelagic cyprinid Rastrineobola argentea or Dagaa/Mukene the introduced fishes have contributed unprecidented catches, stimulating vibrant commercial fisheries which have yielded significant social economic benefits to the peoples of the three states riparian to the Lake (Reynolds and Greboval, 1988; Kudhongania et al in press). The impressive landings particularly of the Nile perch and Nile tilapia have also led to rapid industrialisation of fish processing in East Africa mainly for the export market. Fish export has now the potential of a major foreign exchange enterprise in the region.
Resumo:
Orthobunyaviruses are the largest genus within the Bunyaviridae family, with over 170 named viruses classified into 18 serogroups (Elliott and Blakqori, 2001; Plyusnin et al., 2012). Orthobunyaviruses are transmitted by arthropods and have a tripartite negative sense RNA genome, which encodes 4 structural proteins and 2 non-structural proteins. The non-structural protein NSs is the primary virulence factor of orthobunyaviruses and potent antagonist of the type I interferon (IFN) response. However, sequencing studies have identified pathogenic viruses that lack the NSs protein (Mohamed et al., 2009; Gauci et al., 2010). The work presented in this thesis describes the molecular and biological characterisation of divergent orthobunyaviruses. Data on plaque morphology, growth kinetics, protein profiles, sensitivity to IFN and activation of the type I IFN system are presented for viruses in the Anopheles A, Anopheles B, Capim, Gamboa, Guama, Minatitlan, Nyando, Tete and Turlock serogroups. These are complemented with complete genome sequencing and phylogenetic analysis. Low activation of IFN by Tete serogroup viruses, which naturally lack an NSs protein, was also further investigated by the development of a reverse genetics system for Batama virus (BMAV). Recombinant viruses with mutations in the virus nucleocapsid protein amino terminus showed higher activation of type I IFN in vitro and data suggests that low levels of IFN are due to lower activation rather than active antagonism. The anti-orthobunyavirus activity of IFN-stimulated genes IFI44, IFITMs and human and ovine BST2 were also studied, revealing that activity varies not only within the orthobunyavirus genus and virus serogroups but also within virus species. Furthermore, there was evidence of active antagonism of the type I IFN response and ISGs by non-NSs viruses. In summary, the results show that pathogenicity in man and antagonism of the type I IFN response in vitro cannot be predicted by the presence, or absence, of an NSs ORF. They also highlight problems in orthobunyavirus classification with discordance between classical antigen based data and phylogenetic analysis.
Resumo:
Biological control of weeds in Vanuatu began in 1935, with the introduction of the tingid Teleonemia scrupulosa to control Lantana camara. To date, nine biological control agents have been intentionally introduced to control eight weed species. Seven of these agents have established on their respective hosts while an eighth, Zygogramma bicolorata, an agent for Parthenium hysterophorus has only recently been released and establishment is unlikely. The fate of a ninth agent, Heteropsylla spinulosa, released for the control of Mimosa diplotricha is unclear. Six other biological control agents, including Epiblema strenuana which was first detected in 2014 on P. hysterophorus on Efate have spread into the country unintentionally. Control of the target weeds range from inadequate to very good. By far the most successful agent has been Calligrapha pantherina which was introduced to control Sida acuta and Sida rhombifolia. The beetle was released on 14 islands and managed to spread to at least another 10 islands where it has effectively controlled both Sida spp. Control of the two water weeds, Eichhornia crassipes by Neochetina bruchi and N. eichhorniae and Pistia stratiotes by Neohydronomus affinis, has also been fairly good in most areas. Two agents, T. scrupulosa and Uroplata girardi, were released on L. camara, and four other agents have been found on the weed, but L. camara is still not under adequate control. The rust Puccinia spegazzinii was first released on Mikania micrantha in 2012 and successfully established. Anecdotal evidence suggests that it is having an impact on M. micrantha, but detailed monitoring is required to determine its overall impact. Future prospects for weed biological control in Vanuatu are positive, with the expected greater spread of recently released agents and the introduction of new agents for P. hysterophorus, L. camara, Dolichandra unguis-cati and Spathodea campanulata.
Resumo:
Biological control of introduced weeds in the 22 Pacific island countries and territories (PICTs) began in 1911, with the lantana seed-feeding fly introduced into Fiji and New Caledonia from Hawaii. To date, a total of 62 agents have been deliberately introduced into the PICTs to control 21 weed species in 17 countries. A further two agents have spread naturally into the region. The general impact of the 36 biocontrol agents now established in the PICTs ranges from none to complete control of their target weed(s). Fiji has been most active in weed biocontrol, releasing 30 agents against 11 weed species. Papua New Guinea, Guam, and the Federated States of Micronesia have also been very active in weed biocontrol. For some weeds such as Lantana camara, agents have been released widely, and can now be found in 15 of the 21 PICTs in which the weed occurs. However, agents for other commonly found weeds, such as Sida acuta, have been released in only a few countries in which the weed is present. There are many safe and effective biocontrol agents already in the Pacific that could be utilised more widely, and highly effective agents that have been released elsewhere in the world that could be introduced following some additional host specificity testing. This paper discusses the current status of biological control efforts against introduced weeds in the 22 PICTs and reviews options that could be considered by countries wishing to initiate weed biological control programmes.
Resumo:
Chalcalburnus mossulensis from the cyprinidae family is one of the indigenous fish in Gheshlag Lake of Kordestan-Iran. Ligula intestinalis is one of the infective parasites of this fish. In this study, the effect of this parasite on some biological aspects of this fish like weight, length, PI, CF, GSR, blood sex steroid hormones and gonadal tissue, was investigated. During one year, by seasonal sampling, 144 fish sample from mentioned species were collected using trap net. By considering the scale sample, the fish with the same age were separated and tested as the point of infection with the parasite. By biochemical and histopathological investigation of fish blood and gonad tissue, it was clear that increase in infection rate of fish, caused decrease in biological parameters. There was a significant difference (p<0.05) between the means of sex steroid hormones (17-B Estradiol and Testostreone) of infected and non-infected fish and this parameter was significantly lower in infected ones. This significant difference also was seen between the means of male and female gonads maturation steps of infected and non-infected samples. The reason for lack of maturation of gonads tissue is infection by Ligula intestinalis. Also in gonads of infected fish, abnormal degenerative changes like MMC (Melano-Macrophage Center), hemorrhage and necrosis were seen that were not reported by other researchers. So the spread of this parasite in different water sources should be consider as the point of the maintenance of native species and cultivated fish.
Resumo:
Vegetative propagation of superior conifer trees can be achieved e.g. through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots including physical and chemical ones such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates or media (reviewed by Ragonezi et al. 2010). The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant- growth-promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.
Resumo:
Since 1966 especially recent decade, Caspian trout (Salmo trutta caspius Kessler, 1877) considered as a strategic endemic species for Caspian Sea fisheries resources also coldwater aquaculture in Iran. Nowadays habitat condition effects on this subspecies during life stages, artificial breeding and incubation period noticed by research and execution sessions of fisheries in Iran. Incubation duration of Caspian trout from artificial fertilization followed by green egg and eyed egg, hatching and yolk sac absorption identified as most sensitive stages for fish and any pollution, stress and deviation by natural life conditions of embryo up to larvae could provide possible mortalities and observable or hidden alterations. Among all vital factors for Caspian trout welfare even in conservation plans and stocks rehabilitation programs or recent attempts for domestication of this fish for introduction to cold water aquaculture industry, water temperature as the most important physical factor which might conserve or induce stress to rearing environment condition is not considered yet. In hatcheries activities, the temperature for incubation and rearing Caspian trout eggs is determining by available water temperature and wide range of temperatures in governmental or private farms is using depend on the water resources availability. Also global climate change consideration and increase temperature trend accompany with group of physical and chemical factors provided by fish farm discharges and other source points entered to the migration pathway of Caspian trout in spawning season were not investigated before. Natural spawning migration pathway is upstream of Caspian tout south and south west rivers especially in Cheshmehkileh upstream in Tonekabon, Iran directed this research focus on the mentioned location. For simulation of natural spawning bed for Caspian trout, water supplied from the upstream of Daryasar branch as headwater of Cheshmehkileh River which provided REDD water condition for in vitro incubation. Green eggs treatments of wild and F1 cultured brooders both 3+ were incubated. Incubation implemented in dark, constant temperature (4, 8, 12 degree centigrade) and DO–pH–temperature digital monitoring in 3 recycling incubators ended to yolk sac absorption and entering larval stage. Hatching success, possible genome alterations by HSP70 gene expression and comet assay implemented as diagnostic tools in 3 life stages of eyed egg– Alevin and Larvae. Numbers and diameters of larvae white fiber muscles measured by histology experiment and Hematoxylin–eosine staining. Results stated significant effect of incubation temperature on hatching success, genome and white fiber muscles of wild and F1 samples. Hatching success measured as 31% and 38% for cultured and wild cold treatments, 79% and 91% for normal and 64% and 73% for warm cultured and wild treatments respectively. Considerable mortality occurred for cold treatment and 8 degree centigrade stated the best thermal condition in normal incubator according to hatching success in wild Caspian trout samples.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
Diaugia angusta Perty, 1833 is a Neotropical species of Tachinidae (Diptera) reported here as a parasitoid of Metamasius ensirostris (Germar, 1824) and M hemipterus (Linnaeus, 1758) (Coleoptera: Dryophthoridae) in Brazil. Several species of Dryophthoridae and Curculionidae cause damage to bromeliad and palm species, and most are regarded as pests. In the present study, the male and female of D. angusta are morphologically characterized and illustrated to provide a means for the identification of this parasitoid. Data obtained from preliminary field research show that natural parasitism of Metamasius pupae by D. angusta varies by year but can reach nearly 30%. A network of parasitoid-host interactions among tachinid parasitoids and coleopteran hosts reported as bromeliad and palm pests (Dryophthoridae and Curculionidae) in the Americas indicates that the species of the tribe Dexiini sensu lam (including D. angusta) might be promising as biological control agents of these pests.
Resumo:
Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.