988 resultados para atmospheric deep convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tectogene, or crustal downbuckle, was proposed in the early 1930s by F.A. Vening Meinesz to explain the unexpected belts of negative gravity anomalies in island arcs. He attributed the isostatic imbalance to a deep sialic root resulting from the action of subcrustal convection currents. Vening Meinesz's model was initially corroborated experimentally by P.H. Kuenen, but additional experiments by D.T. Griggs and geological analysis by H.H. Hess in the late 1930s led to substantial revision in detail. As modified, the tectogene provided a plausible model for the evolution of island arcs into alpine mountain belts for another two decades. Additional revisions became necessary in the early 1950s to accommodate the unexpected absence of sialic crust in the Caribbean and the marginal seas of the western Pacific. By 1960 the cherished analogy between island arcs and alpine mountain belts had collapsed under the weight of the detailed field investigations by Hess and his students in the Caribbean region. Hess then incorporated a highly modified form of the tectogene into his sea-floor spreading hypothesis. Ironically, this final incarnation of the concept preserved some of the weaker aspects of the 1930s original, such as the ad hoc explanation for the regular geometry of island arcs.

Relevância:

20.00% 20.00%

Publicador: