994 resultados para antenna simulation
Resumo:
In this paper, available elimination techniques are assessed. OLGA2000 software is used to simulate severe slugging formation mechanism in certain offshore riser. The simulation results show that pressure fluctuations of riser base and riser top is very large and severe slugging easily forms. Sensibility analysis shows that the measures and methods which include properly reducing pipe riser diameter, reducing water cut increasing terminal pressure, decreasing the height and inclination of riser and increasing GOR can eliminate or control severe slugging in riser pipe.
Resumo:
The information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method are used to simulate the gas flows between the write/read head and the platter of the disk drive (the slider bearing problem). The results of both methods are in good agreement with numerical solution of the Reynolds equation in the cases studied. However, the DSMC method owing to the problem of large sample size demand and the difficulty in regulating boundary conditions at the inlet and outlet was able to simulate only short bearings, while IP simulates the bearing of authentic length ~1000 m ? and can provide more detailed flow information.
Resumo:
The growth process of 2-inch silicon carbide (SiC) single crystals by the physical vapor transport method (or modified Lely method) has been modeled and simulated. The comprehensive process model incorporates the calculations of radio frequency (RF) induction heating, heat and mass transfer and growth kinetics. The transport equations for electromagnetic field, heat transfer, and species transport are solved using a finite volume-based numerical scheme called MASTRAPP (Multizone Adaptive Scheme for Transport and Phase Change Process). Temperature distribution for a 2-inch growth system is calculated, and the effects of induction heating frequency and current on the temperature distribution and growth rate are investigated. The predicted results have been compared with the experimental data.
Resumo:
In order to capture shock waves and contact discontinuities in the field and easy to program with parallel computation a new algorithm is developed to solve the N-S equations for simulation of R-M instability problems. The method with group velocity control is used to suppress numerical oscillations, and an adaptive non-uniform mesh is used to get fine resolution. Numerical results for cylindrical shock-cylindrical interface interaction with a shock Mach number Ms=1.2 and Atwood number A=0.818, 0.961, 0.980 (the interior density of the interface/outer density p(1)/p(2) = 10, 50, 100, respectively), and for the planar shock-spherical interface interaction with Ms=1.2 and p(1)/p(2) = 14.28are presented. The effect of Atwood number and multi-mode initial perturbation on the R-M instability are studied. Multi-collisions of the reflected shock with the interface is a main reason of nonlinear development of the interface instability and formation of the spike-bubble structures In simulation with double mode perturbation vortex merging and second instability are found. After second instability the small vortex structures near the interface produced. It is important factor for turbulent mixing.
Resumo:
Recent studies showed that vibration caused by blasting mainly reflects the property of geological structure itself neighboring the blasting center. Different vibration signals can be collected for different geological structures under blasting. Hence, vibration signal can be used to identify geological structure, especial for a slope with a weak layer. As the geological structure for a practical slope is usually complicated, the simulation of vibration caused by blasting should be carried out first. Generally, the material in a certain zone near the blasting center will undergo damage, so the physical model to simulate this region is the most concerned. In this paper, the damaged zone near blasting center is neglected, and the blasting load can be considered being applied on the interface between the damaged zone and undamaged zone. Regarding the relations between the weight of explosive, the size of damaged zone, and the dynamic loading to propagate out away, the vibration caused by blasting for a practical layered slope is simulated. Compared with the measured signal in site, it can be seen that the simulating result is in well agreement with that of practical testing. The results also indicate that the farther the testing point apart from the blasting center, the more accurate the simulation is.
Resumo:
A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment (AUSM) turbulence-chemistry model is used to simulate Beijing coal combustion and NOx formation. The sub-models are the k-epsilon-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The blocking effect on NOx formation is discussed. In addition, the chemical equilibrium analysis is used to predict NOx concentration at different temperature. Results of CID simulation and chemical equilibrium analysis show that, optimizing air dynamic parameters can delay the NOx formation and decrease NOx emission, but it is effective only in a restricted range. In order to decrease NOx emission near to zero, the re-burning or other chemical methods must be used.
Resumo:
A novel pulsed laser surface processing technology is introduced, which can make use of the spatial and temporal profile of laser pulse to obtain ideal hardening parameters. The intensity distribution of laser pulse is spatially and temporally controlled by using laser shape transformation technology. A 3D numerical model including multi-phase transformations is established to explore material microstructure evolution induced by temperature field evolution. The influences of laser spatial-temporal profiles on hardening parameters are investigated. Different from the continuous laser processing technology, results indicate that spatial and temporal profiles are important factors in determining processing quality during pulsed laser processing method.
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by "GAMESS", and the rest atoms are treated as MM part calculated by "TINKER". The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(100) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the in-tidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
This paper simulates a one-dimensional physical model of natural gas production from hydrate dissociation in a reservoir by depressurization. According to the principles of solid hydrate decomposition in stratum and flow of natural gas in porous medium, the pressure governing equations for both gas zone and hydrate zone are set up based on the physical production model. Using the approximation reported by N. N. Verigin et al. (1980), the nonlinear governing equations are simplified and the self-similar solutions are obtained. Through calculation, for different reservoir parameters, the distribution characters of pressure are analyzed. The decline trend of natural gas production rate with time is also studied. The simulation results show that production of natural gas from a hydrate reservoir is very sensitive to several reservoir parameters, such as wellbore pressure and stratum porosity and permeability.
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.
Resumo:
Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated. We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard-Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
In the present talk, the simulation of vortex dominant and turbulent flows are primarily addressed. To cope with complicated circumstances in environmental flows we illustrate the strategy of combining simplified physical model and suitable algorithm by a few examples.