981 resultados para antenna coupled resonator matching sections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronization phenomena in a fluid dynamical analogue of atmospheric circulation is studied experimentally by investigating the dynamics of a pair of thermally coupled, rotating baroclinic annulus systems. The coupling between the systems is in the well-known master-slave configuration in both periodic and chaotic regimes. Synchronization tools such as phase dynamics analysis are used to study the dynamics of the coupled system and demonstrate phase synchronization and imperfect phase synchronization, depending upon the coupling strength and parameter mismatch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mVelicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex. (c) 2005 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FBAR devices with carbon nanotube (CNT) electrodes have been developed withthe aim of taking advantage of the low density and high acoustic impedance ofthe CNTs compared to other known materials. The influence of the CNTs on thefrequency response of the FBAR devices was studied by comparing two identicalsets of devices, one set comprised FBARs fabricated with chromium/gold bilayerelectrodes, and the second set comprised FBARs fabricated with CNT electrodes.It was found that the CNTs had a significant effect on attenuating travellingwaves at the surface of the FBARs membranes due to their high elastic stiffness.Finite element analysis of the devices fabricated was carried out using COMSOLMultiphysics, and the numerical results confirmed the experimental resultsobtained. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, phase noise analysis of a mechanical autonomous impact oscillator with a MEMS resonator is performed. Since the circuit considered belongs to the class of hybrid systems, methods based on the variational model for the evaluation of either phase noise or steady state solutions cannot be directly applied. As a matter of fact, the monodromy matrix is not defined at impact events in these systems. By introducing saltation matrices, this limit is overcome and the aforementioned methods are extended. In particular, the unified theory developed by Demir is used to analyze the phase noise after evaluating the asymptotically stable periodic solution of the system by resorting to the shooting method. Numerical results are presented to show how noise sources affect the phase noise performances. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate synchronization of two electrically coupled MEMS oscillators incorporating nearly identical silicon tuning fork microresonators. It is seen that as the output of the oscillators are coupled, they exhibit a synchronized response wherein the output amplitudes and signal-to-noise ratios of the two oscillators are improved relative to the case where the two oscillators are uncoupled. The observed output frequency of each oscillator before coupling is 219402.4 Hz and 219403.6 Hz respectively. In contrast, when the oscillators are driven simultaneously, they lock at a common output frequency of 219401.3 Hz and their outputs are found to be out-of-phase with respect to each other. A 6 dBm gain in output power and a reduction in the phase fluctuations of the output signal are observed for the coupled oscillators compared to the case when the oscillators are uncoupled. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.