968 resultados para anonimato rete privacy deep web onion routing cookie


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced control architecture is proposed which recognizes and configures new connections, automatically performs calibration and initiates the routing of 100Gb/s data packets. The scheme is proposed for high capacity, low overhead, short reach networking. ©2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use lambda (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 mum. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as approximately 10 Vcm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was initiated in May 2011, under the direction of the Deepwater Horizon (DWH) Natural Resource Damage Assessment (NRDA) Deepwater Benthic Communities Technical Working Group (NRDA Deep Benthic TWG), to assess potential impacts of the DWH oil spill on sediments and resident benthic fauna in deepwater (> 200 meters) areas of the Gulf. Key objectives of the study were to complete the analysis of samples from 65 priority stations sampled in September-October 2010 on two DWH Response cruises (Gyre and Ocean Veritas) and from 38 long-term monitoring sites (including a subset of 35 of the original 65) sampled on a follow-up NRDA cruise in May-June 2011. The present progress report provides a brief summary of results from the initial processing of samples from fall 2010 priority sites (plus three additional historical sites). Data on key macrofaunal, meiofaunal, and abiotic environmental variables are presented for each of these samples and additional maps are included to depict spatial patterns in these variables throughout the study region. The near-field zone within about 3 km of the wellhead, where many of the stations showed evidence of impaired benthic condition (e.g. low taxa richness, high nematode/harpacticoid-copepod ratios), also is an area that contained some of the highest concentrations of total petroleum hydrocarbons (TPH), total polycyclic aromatic hydrocarbons (total PAHs), and barium in sediments (as possible indicators of DWH discharges). There were similar co-occurrences at other sites outside this zone, especially to the southwest of the wellhead out to about 15 km. However, there also were exceptions to this pattern, for example at several farther-field sites in deeper-slope and canyon locations where there was low benthic species richness but no evidence of exposure to DWH discharges. Such cases are consistent with historical patterns of benthic distributions in relation to natural controlling factors such as depth, position within canyons, and availability of organic matter derived from surface-water primary production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides a compilation of new maps and spatial assessments for seabirds, bathymetry, surficial sediments, deep sea corals, and oceanographic habitats in support of offshore spatial planning led by the New York Department of State Ocean and Great Lakes Program. These diverse ecological themes represent priority information gaps left by past assessments and were requested by New York to better understand and balance ocean uses and environmental conservation in the Atlantic. The main goal of this report is to translate raw ecological, geomorphological and oceanographic data into maps and assessments that can be easily used and understood by coastal managers involved in offshore spatial planning. New York plans to integrate information in this report with other ecological, geophysical and human use data to obtain a broad perspective on the ocean environment, human uses and their interactions. New York will then use this information in an ecosystem-based framework to coordinate and support decisions balancing competing demands in their offshore environment, and ultimately develop a series of amendments to New York’s federally approved Coastal Management Program. The targeted users of this report and the compiled spatial information are New York coastal managers, but other State and federal decision-makers, offshore renewable energy development interests and environmental advocates will also find the information useful. In addition, the data and approaches will be useful to regional spatial planning initiatives set up by the Mid-Atlantic Regional Council on the Ocean (MARCO) and federal regional planning bodies for coastal and marine spatial planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology.