911 resultados para anaerobic conditions in sewer systems
Resumo:
The behaviour of self adaptive systems can be emergent. The difficulty in predicting the system's behaviour means that there is scope for the system to surprise its customers and its developers. Because its behaviour is emergent, a self-adaptive system needs to garner confidence in its customers and it needs to resolve any surprise on the part of the developer during testing and mainteinance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system's behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, a means needs to be found to explain the current behaviour of the system and the reasons that brought that behaviour about. We propose the use of goal-based models during runtime to offer self-explanation of how a system is meeting its requirements, and why the means of meeting these were chosen. We discuss the results of early experiments in self-explanation, and set out future work. © 2012 C.E.S.A.M.E.S.
Resumo:
Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.
Resumo:
A new generalized sphere decoding algorithm is proposed for underdetermined MIMO systems with fewer receive antennas N than transmit antennas M. The proposed algorithm is significantly faster than the existing generalized sphere decoding algorithms. The basic idea is to partition the transmitted signal vector into two subvectors x and x with N - 1 and M - N + 1 elements respectively. After some simple transformations, an outer layer Sphere Decoder (SD) can be used to choose proper x and then use an inner layer SD to decide x, thus the whole transmitted signal vector is obtained. Simulation results show that Double Layer Sphere Decoding (DLSD) has far less complexity than the existing Generalized Sphere Decoding (GSDs).
Resumo:
An improved digital backward propagation (DBP) is proposed to compensate inter-nonlinear effects and dispersion jointly in WDM systems based on an advanced perturbation technique (APT). A non-iterative weighted concept is presented to replace the iterative in analytical recursion expression, which can dramatically simplify the complexity and improve accuracy compared to the traditional perturbation technique (TPT). Furthermore, an analytical recursion expression of the output after backward propagation is obtained initially. Numerical simulations are executed for various parameters of the transmission system. The results indicate that the advanced perturbation technique will relax the step size requirements and reduce the oversampling factor when launch power is higher than -2 dBm. We estimate this technique will reduce computational complexity by a factor of around seven with respect to the conventional DBP. © 2013 Optical Society of America.
Resumo:
The behaviour of self adaptive systems can be emergent, which means that the system’s behaviour may be seen as unexpected by its customers and its developers. Therefore, a self-adaptive system needs to garner confidence in its customers and it also needs to resolve any surprise on the part of the developer during testing and maintenance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system’s behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, we propose the use of goal-based requirements models at runtime to offer self-explanation of how a system is meeting its requirements. We demonstrate the analysis of run-time requirements models to yield a self-explanation codified in a domain specific language, and discuss possible future work.
Regional policy variation in Germany:the diversity of living conditions in a 'unitary federal state'
Resumo:
The German federal system is conventionally understood as highly co-ordinated between federal and regional governments and aimed at producing a 'uniformity' of living conditions. This view has increasingly been challenged as new work focuses on innovation and diversity at the regional level, and also as a consequence of reforms to the federal system that took place in 2006. This contribution attempts to establish a more systematic basis for assessing and explaining the scope and significance of regional policy variation in Germany. Our findings suggest that - despite institutional structures that foster intense co-ordination between central and regional governments and apparent popular preferences for uniformity of policy outcomes - the extent of policy variation in Germany is much greater than conventionally understood and driven both by structural factors and partisan choices at the regional level. © 2014 © 2014 Taylor & Francis.
Resumo:
A statistical approach to evaluate numerically transmission distances in optical communication systems was described. The proposed systems were subjected to strong patterning effects and strong intersymbol interference. The dependence of transmission distance on the total number of bits was described. Normal and Gaussian distributions were used to derive the error probability.
Resumo:
Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.
Resumo:
Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.