951 resultados para alpha adrenergic receptor blocking agent
Resumo:
Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.
Resumo:
CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.
Resumo:
The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.
Resumo:
In patients with advanced estrogen-dependent type I endometrial cancer (EC), pharmacological treatment with progestins or antiestrogens is recommended, but primary and secondary resistance are common. The aim of our study was to investigate single-agent and dual-agent therapeutic strategies in estrogen receptor-positive human EC cells.
Resumo:
Breast cancer is the most common cancer among women, and tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment. Many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Consequently, there is an ongoing need for breast cancer drugs that have different molecular targets. Previous work has shown that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat models, interacting with an unsolved receptor, while peptides smaller than eight amino acids did not. We show that the use of replica exchange molecular dynamics predicts the structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. Simulations identified smaller peptide analogues with the same conserved reverse turn demonstrated in the larger peptides. These analogues were synthesized and shown to inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition.
Resumo:
G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study.
Resumo:
Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M(2), M(3), alpha(2AD)- and beta(2)-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [(3)H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M(2) (all intestinal sites), M(3) (duodenum and caecum), and of alpha(2AD)-AR (abomasal fundus) were lower (P<0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of alpha(2AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.
Resumo:
N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.
Resumo:
(E)-β-caryophyllene (BCP) is a natural sesquiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB(2)) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2 and NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB(2) knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB(2) receptor-dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in a multitude of diseases associated with inflammation and oxidative stress.
Resumo:
The abundance of alpha-fetoprotein (AFP), a natural protein produced by the fetal yolk sac during pregnancy, correlates with lower incidence of estrogen receptor positive (ER+) breast cancer. The pharmacophore region of AFP has been narrowed down to a four amino acid (AA) region in the third domain of the 591 AA peptide. Our computational study focuses on a 4-mer segment consisting of the amino acids threonine-proline-valine-asparagine (TPVN). We have run replica exchange molecular dynamics (REMD) simulations and used 120 configurational snapshots from the total trajectory as starting configurations for quantum chemical calculations. We optimized structures using semiempirical (PM3, PM6, PM6-D2, PM6-H2, PM6-DH+, PM6-DH2) and density functional methods (TPSS, PBE0, M06-2X). By comparing the accuracy of these methods against RI-MP2 benchmarks, we devised a protocol for calculating the lowest energy conformers of these peptides accurately and efficiently. This protocol screens out high-energy conformers using lower levels of theory and outlines a general method for predicting small peptide structures.
Resumo:
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.
Resumo:
Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.
Resumo:
The major isoforms of the GABAA (gamma-aminobutyric acid type A) receptor are composed of two alpha, two beta and one gamma subunit. Thus alpha and beta subunits occur twice in the receptor pentamer. As it is well documented that different isoforms of alpha and beta subunits can co-exist in the same pentamer, the question is raised whether the relative position of a subunit isoform affects the functional properties of the receptor. We have used subunit concatenation to engineer receptors of well-defined subunit arrangement to study this question. Although all five subunits may be concatenated, we have focused on the combination of triple and dual subunit constructs. We review here what is known so far on receptors containing simultaneously alpha1 and alpha6 subunits and receptors containing beta1 and beta2 subunits. Subunit concatenation may not only be used to study receptors containing two different subunit isoforms, but also to introduce a point mutation into a defined position in receptors containing either two alpha or beta subunits, or to study the receptor architecture of receptors containing unconventional GABAA receptor subunits. Similar approaches may be used to characterize other members of the pentameric ligand-gated ion channel family, including nicotinic acetylcholine receptors, glycine receptors and 5-HT3 (5-hydroxytryptamine) receptors.
Resumo:
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.