950 resultados para algal biomass
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.
Resumo:
Due to highly erodible volcanic soils and a harsh climate, livestock grazing in Iceland has led to serious soil erosion on about 40% of the country's surface. Over the last 100 years, various revegetation and restoration measures were taken on large areas distributed all over Iceland in an attempt to counteract this problem. The present research aimed to develop models for estimating percent vegetation cover (VC) and aboveground biomass (AGB) based on satellite data, as this would make it possible to assess and monitor the effectiveness of restoration measures over large areas at a fairly low cost. Models were developed based on 203 vegetation cover samples and 114 aboveground biomass samples distributed over five SPOT satellite datasets. All satellite datasets were atmospherically corrected, and digital numbers were converted into ground reflectance. Then a selection of vegetation indices (VIs) was calculated, followed by simple and multiple linear regression analysis of the relations between the field data and the calculated VIs. Best results were achieved using multiple linear regression models for both %VC and AGB. The model calibration and validation results showed that R2 and RMSE values for most VIs do not vary very much. For percent VC, R2 values range between 0.789 and 0.822, leading to RMSEs ranging between 15.89% and 16.72%. For AGB, R2 values for low-biomass areas (AGB < 800 g/m2) range between 0.607 and 0.650, leading to RMSEs ranging between 126.08 g/m2 and 136.38 g/m2. The AGB model developed for all areas, including those with high biomass coverage (AGB > 800 g/m2), achieved R2 values between 0.487 and 0.510, resulting in RMSEs ranging from 234 g/m2 to 259.20 g/m2. The models predicting percent VC generally overestimate observed low percent VC and slightly underestimate observed high percent VC. The estimation models for AGB behave in a similar way, but over- and underestimation are much more pronounced. These results show that it is possible to estimate percent VC with high accuracy based on various VIs derived from SPOT satellite data. AGB of restoration areas with low-biomass values of up to 800 g/m2 can likewise be estimated with high accuracy based on various VIs derived from SPOT satellite data, whereas in the case of high biomass coverage, estimation accuracy decreases with increasing biomass values. Accordingly, percent VC can be estimated with high accuracy anywhere in Iceland, whereas AGB is much more difficult to estimate, particularly for areas with high-AGB variability.
Resumo:
Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active growth and freeze-thaw cycles restricting microbial growth. In managed subalpine grasslands, we expect these interactions to be influenced by recent changes in agricultural land use, and associated modifications in plant and microbial communities. At several subalpine grasslands in the French Alps, we added pulses of 15N to the soil at the end of snowmelt, allowing us to compare the dynamics of inorganic N uptake in plants and microbes during this period with that previously reported at the peak biomass in July. In all grasslands, while specific shoot N translocation (per g of biomass) of dissolved inorganic nitrogen (DIN) was two to five times greater at snowmelt than at peak biomass, specific microbial DIN uptakes were similar between the two sampling dates. On an area basis, plant communities took more DIN than microbial communities at the end of snowmelt when aboveground plant biomasses were at least two times lower than at peak biomass. Consequently, inorganic N partitioning after snowmelt switches in favor of plant communities, allowing them to support their growing capacities at this period of the year. Seasonal differences in microbial and plant inorganic N-related dynamics were also affected by past (terraced vs. unterraced) rather than current (mown vs. unmown) land use. In terraced grasslands, microbial biomass N remained similar across seasons, whereas in unterraced grasslands, microbial biomass N was higher and microbial C : N lower at the end of snowmelt as compared to peak biomass. Further investigations on microbial community composition and their organic N uptake dynamics are required to better understand the decrease in microbial DIN uptake.
Resumo:
Fire has an influence on regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine the interaction between climate and fire activity. Here, we present a high performance anion exchange chromatography–mass spectrometry method to allow separation and analysis of levoglucosan, mannosan and galactosan in lake sediments, with implications for reconstructing past biomass burning events. Determining mannosan and galactosan in Lake Kirkpatrick, New Zealand (45.03°S, 168.57°E) sediment cores and comparing these isomers with the more abundant biomass burning markers levoglucosan and charcoal represents a significant advancement in our ability to analyze past fire activity. Levoglucosan, mannosan and galactosan concentrations correlated significantly with macroscopic charcoal concentration. Levoglucosan/mannosan and levoglucosan/(mannosan + galactosan) ratios may help determine not only when fires occurred, but also if changes in the primary burned vegetation occurred.
Resumo:
Ice core measurements (H2O2 and CH4/HCHO) and modeling studies indicate a change in the oxidation capacity of the atmosphere since the onset of the Industrial Revolution due to increases in fossil fuel burning emissions [e. g., Lelieveld et al., 2002; Hauglustaine and Brasseur, 2001; Wang and Jacob, 1998; Staffelbach et al., 1991]. The mass-independent fractionation (MIF) in the oxygen isotopes of sulfate and nitrate from a Greenland ice core reveal that biomass-burning events in North America just prior to the Industrial Revolution significantly impacted the oxidation pathways of sulfur and nitrogen species deposited in Greenland ice. This finding highlights the importance of biomass-burning emissions for atmospheric chemistry in preindustrial North America and warrants the inclusion of this impact in modeling studies estimating changes in atmospheric oxidant chemistry since the Industrial Revolution, particularly when using paleo-oxidant data as a reference for model evaluation.
Resumo:
Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganicN(IN, ammonium, nitrate) and organicN(ON, e. g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Resumo:
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.
Resumo:
In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.
Resumo:
The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.