975 resultados para agent-oriented programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver paint has been tested as a soldering agent for DyBaCuO single-domain welding. Junctions have been manufactured on Dy-Ba-Cu-O single-domains cut either along planes parallel to the c-axis or along the ab-planes. Microstructural and superconducting characterisations of the samples have been performed. For both types of junctions, the microstructure in the joined area is very clean: no secondary phase or Ag particles segregation has been observed. Electrical and magnetic measurements for all configurations of interest are reported $\rho(T)$ curves, and Hall probe mapping). The narrow resistive superconducting transition reported for all configurations shows that the artificial junction does not affect significantly the measured superconducting properties of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a characterization of contraction for bounded convex sets. For discrete-time multi-agent systems we provide an explicit upperbound on the rate of convergence to a consensus under the assumptions of contractiveness and (weak) connectedness (across an interval.) Convergence is shown to be exponential when either the system or the function characterizing the contraction is linear. Copyright © 2007 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a method to realize vertically oriented Ge nanowires on Si(111) substrates. Ge nanowires were grown by chemical vapor deposition using Au nanoparticles to seed nanowire growth via a vapor-liquid-solid growth mechanism. Rapid oxidation of Si during Au nanoparticle application inhibits the growth of vertically oriented Ge nanowires directly on Si. The present method employs thin Ge buffer layers grown at low temperature less than 600 degrees C to circumvent the oxidation problem. By using a thin Ge buffer layer with root-mean-square roughness of approximately 2 nm, the yield of vertically oriented Ge nanowires is as high as 96.3%. This yield is comparable to that of homoepitaxial Ge nanowires. Furthermore, branched Ge nanowires could be successfully grown on these vertically oriented Ge nanowires by a secondary seeding technique. Since the buffer layers are grown under moderate conditions without any high temperature processing steps, this method has a wide process window highly suitable for Si-based microelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-channel complex machine tool (MCCM) is a versatile machining system equipped with more than two spindles and turrets for both turning and milling operations. Despite the potential of such a tool, the value of the hardware is largely dependent on how the machine tools are effectively programmed for machining. In this paper we consider a shop-floor programming system based on ISO 14649 (called e-CAM), the international standard for the interface between computer-aided manufacture (CAM) and computer numerical control (CNC). To be deployed in practical industrial usage a great deal of research has to be carried out. In this paper we present: 1) Design consideration for an e-CAM system, 2) The architecture design of e-CAM, 3) Major algorithms to fulfill the modules defined in the architecture, and 4) Implementation details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured hexagonal InN overlayers were heteroepitaxially deposited on vertically oriented c-axis GaN nanorods by metal-organic chemical vapor deposition. InN overlayers grown in radial directions are featured by a nonpolar heteroepitaxial growth mode on GaN nanorods, showing a great difference from the conventional InN growth on (0001) c-plane GaN template. The surface of InN overlayers is mainly composed of several specific facets with lower crystallographic indices. The orientation relationship between InN and GaN lattices is found to be [0001](InN) parallel to [0001](GaN) and [1100](InN)parallel to[1100](GaN). A strong photoluminescence of InN nanostructures is observed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3177347]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth direction of ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD) is modulated by pretreatment of (001) SMO3 (STO) substrates. ZnO films show a-oriented smooth surface with epitaxial relationship of < 001 > ZnO//< 110 > STO on as-received SfO, and c-axis columnar growth with < 010 > ZnO//< 110 > STO on etched STO, respectively. The orientation alteration of ZnO films is supposed to be caused by the change of STO surface polarity. In addition, the c-ZnO films exhibit an enhanced photoluminescence (PL) intensity due to the improved crystal quality, while the blueshift of PL peak is attributed to the smaller tensile strain. These results show that high quality c-ZnO, which is essential for electronic and optoelectronic device applications, can be grown on (001) SfO by MOCVD. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-dose ion implantation of phosphorus into 4H-SiC (0001) has been investigated with three different ion fluxes ranging from 1.0 to 4.0 x 10(12) P(+)cm(-2.)s(-1) and keeping the implantation dose constant at 2.0 x 10(15) P(+)cm(-2). The implantations are performed at room temperature and subsequently annealed at 1500 degrees C. Photoluminescence and Raman scattering are employed to investigate the implantation-induced damages and the residual defects after annealing. The electrical properties of the implanted layer are evaluated by Hall effect measurements on the sample with a van der Pauw configuration. Based on these results, it is revealed that the damages and defects in implanted layers can be greatly reduced by decreasing the ion flux. Considering room temperature implantation and a relatively low annealing temperature of 1500 degrees C, a reasonably low sheet resistance of 106 Omega/square is obtained at ion flux of 1.0 x 10(12) P(+)cm(-2.)s(-1) with a donor concentration of 4.4 x 10(19)cm(-3).