927 resultados para ZnO Microflowers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sol-gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400-500 degrees C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C-V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (P-s) and coercive field were 0.15 mu C/cm(2) and 20 kV/cm, respectively, confirming the presence of ferroelectricity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dodecylsulphate-intercalated zinc hydroxysalt, Zn-5(OH)(8)(DS)(2)center dot mH(2)O delaminates to give monolayer colloidal dispersions in alcohols such as 1-butanol and ethylene glycol. The extent of delamination and the stability of the colloidal dispersion are comparable to those of layered double hydroxides. The solvothermal decomposition of the colloidal dispersion of the hydroxysalt in ethylene glycol yields a bimodal ZnO having a nanotubular structure decorated with nanosheets. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a general method for the synthesis of functional nanoporous structures by heat treating a loose compact of nanorods. Partial sintering of such a compact leads to spherodization of the nanorods and their fusion at the contact regions leading to an interconnected porous microstructure. The pore diameter can be controlled by changing the original nanorod diameter. We illustrate the generality of the method using TiO2, ZnO and hydroxyapatite as model systems; the method is applicable for any material that can be grown in the form of nanorods. The kinetics of the sintering process can be significantly enhanced in systems in which additional driving forces for mass transport arise from phase transitions proving an ultrafast pathway for producing biphasic porous structures. The possibility of producing hierarchical porous structures using fugitive sintering aids makes this process ideal for a variety of applications including catalysis, photoanodes for solar cells and scaffolds for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terminal solid solubilities of the periclase (MgO-rich) and zincite (ZnO-rich) solid solutions in the MgO---ZnO system have been determined by measuring the activity of MgO using a solid-state galvanic cell of the type 02(g), Pt/MgO, MgF2//MgF2//{χMgO+(1-χ)ZnO}(s, sln), MgF2/Pt, O2(g) in the temperature range 900–1050°C. The ZnO activity was calculated by graphical Gibbs-Duhem integration. The activity-composition plots of both components exhibit a strong positive deviation from ideality and are characterised by a miscibility gap. The terminal solid solubilities of the periclase and zincite solid solutions obtained from the activity-composition plots are found to be in reasonable agreement with those reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction of CO with Cu clusters deposited on a ZnO(0001) crystal and on ZnO/Zn surfaces (prepared in the electron spectrometer) has been examined by UV and X-ray photoelectron spectroscopy. The interaction is stronger with the small Cu clusters deposited on ZnO/Zn surfaces. Interaction of CO is evert stronger with annealed Cu/ZnO/Zn surfaces where Cu-Zn alloy particles are present. Copyright (C) 1996 Published by Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have been carried out in glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5. Mossbauer studies in the ZnO-B2O3-Fe2O3 system show that iron is present as Fe3+ with tetrahedral coordination and that the isomer shift and the quadrupole splitting decrease with increase of Fe2O3 Content; similarly, the isomer shift and quadrupole splitting are also found to decrease with increasing ZnO. On the other hand, in the Na2O-ZnO-B2O3-Fe2O3 system, the isomer shift increases with Na2O or ZnO while the quadrupole splitting is fairly insensitive. Electron paramagnetic resonance in the ZnO-B2O3-Fe2O3 system shows signals at g = 4.20 and 2.0, whose intensity and linewidth show strong dependence on Fe2O3 content. In the ZnO-B2O3-V2O5 system, electron paramagnetic resonance shows that vanadium is present as the vanadyl complex, and the hyperfine coupling constants, A(parallel-to) and A(perpendicular-to) decrease with increasing V2O5 content; on the other hand, g(parallel-to) decreases and g(perpendicular-to) increases slightly, indicating an increase in tetragonal distortion. Zinc borate glasses containing Fe2O3 + V2O5 do not show the hyperfine structure of V4+ due to the interaction between Fe3+ and V4+

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An open-framework zinc phosphate, [C6N4H22][Zn6(PO4)4(HPO4)2] (I), with alternating inorganic and organic layers has been synthesized hydrothermally from a starting mixture of ZnO, HCl, H3PO4, H2C2O4, and triethylenetetramine. Single-crystal data for I: monoclinic, space GROUP =P21/c (No. 14), a=9.881(1), b=16.857(1), c=8.286(1) Å, β=96.7(1)°, V=1370.8(1) Å3, Z=2, R1=0.06, and wR2=0.13 [1408 observed reflections with I>2σ(I)]. The structure of I comprises a network of ZnO4, PO4, and PO3(OH) tetrahedra forming one-dimensional tubes. The tubes, in turn, are linked via oxygen atoms forming macroanionic inorganic layers with eight-membered apertures. The one-dimensional tube-like architecture in I is a novel feature worthy of note.