926 resultados para Zeros of Entire Functions
Resumo:
International audience
Resumo:
Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well-developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A. alata tissue and apply preliminary differential expression analyses to identify candidate genes implicated broadly in biological processes related to prey capture and defense, vision and the phototransduction pathway and sexual reproduction and gametogenesis. Fourth, to better understand venom diversity and mechanisms controlling venom synthesis in A. alata, I use bioinformatics to investigate gene candidates with dual roles in venom and digestion, and review the biology of prey capture and digestion in cubozoans. The morphological and molecular resources presented herein contribute to understanding the evolution of cubozoan characteristics and serve to facilitate further research on this emerging cubozoan model.
Resumo:
Let U be a domain in CN that is not a Runge domain. We study the topological and algebraic properties of the family of holomorphic functions on U which cannot be approximated by polynomials.
Resumo:
Background: Previous studies have reported errors in Activities of Daily Living (ADL) under the presence of distracting objects in dementia and brain injury patients. However, little is known about which distractor-target objects relation might be more harmful for performance. Method: We compared the ADL execution in frontal brain injured patients and control participants under two conditions: One in which target objects were mixed with distractor objects that constituted an alternative semantically related but non-required task (contextual condition) and another in which target objects were mixed with related but isolated distractors that did not constituted a coherent task (non-contextual condition). We separately analyzed ADL commission errors (repetitions, substitutions, objects manipulations, failures in sequence, extra actions) and omissions. In addition, the participants were evaluated with a neuropsychological protocol including a very specific executive functions task (Selective attention, Stimulus-Stimulus and Stimulus-Response conflict). Results: We found that frontal patients produced more commission errors compared to control participants, but only under the contextual condition. No between groups significant differences were found in omissions in both conditions or commission errors in non-contextual conditions. Scores in the Stimulus-Response conflict was significantly correlated with commission errors in the contextual condition. Conclusion: The presence of different non-target objects in ADL performance could require different cognitive process. Contextual ADL conditions required a higher level of executive functions, especially at the level of response (Stimulus-Response conflict). Application to Practice: Occupational therapists should control the presence of objects related to the target task according to the intervention objectives with the patients.
Resumo:
Doutoramento em Economia.
Resumo:
Proteome analysis is a complex and dynamic process that encompasses several analytical platforms that include protein sequencing, structural or expression proteomics, protein modification, sub-cellular protein localization, protein-protein interaction and biological functional proteomics. In fact, expression proteomics is extensively applied in a majority of biomarker detection studies because it provides a detailed overview of differentially expressed proteins in cellular pathways and disease processes. Proteomics are also effective and dynamic in protein-protein interactions and cross-talks between interacting molecules of the cell. Proteomics has evolved into a crucial tool used to investigate the biochemical changes that possibly lead to development of cancer biomarkers. This review draws attention to the progress and advancements in cancer proteomics technology with the aim of simplifying the understanding of the mechanisms underlying the disease and to contribute to detection of biomarkers in addition to the development of novel treatments. Given that proteome is a dynamic entity of cellular functions in health and disease, it is capable of reflecting the immediate environmental state of cells and tissues as shown in this review. The review shows the possibility of elucidating the pathophysiology of acute myeloid leukaemia (AML) through proteome expressions, thus confirming the viability of proteome analysis in profiling AML.
Resumo:
The fibroblast growth factor (FGF) family consists of 22 evolutionarily and structurally related proteins (FGF1 to FGF23; with FGF15 being the rodent ortholog of human FGF19). Based on their mechanism of action, FGFs can be categorized into intracrine, autocrine/paracrine and endocrine subgroups. Both autocrine/paracrine and endocrine FGFs are secreted from their cells of origin and exert their effects on target cells by binding to and activating specific single-pass transmembrane tyrosine kinase receptors (FGFRs). Moreover, FGF binding to FGFRs requires specific cofactors, namely heparin/heparan sulfate proteoglycans or Klothos for autocrine/paracrine and endocrine FGF signaling, respectively. FGFs are vital for embryonic development and mediate a broad spectrum of biological functions, ranging from cellular excitability to angiogenesis and tissue regeneration. Over the past decade certain FGFs (e.g. FGF1, FGF10, FGF15/FGF19 and FGF21) have been further recognized as regulators of energy homeostasis, metabolism and adipogenesis, constituting novel therapeutic targets for obesity and obesity-related cardiometabolic disease. Until recently, translational research has been mainly focused on FGF21, due to the pleiotropic, beneficial metabolic actions and the relatively benign safety profile of its engineered variants. However, increasing evidence regarding the role of additional FGFs in the regulation of metabolic homeostasis and recent developments regarding novel, engineered FGF variants have revitalized the research interest into the therapeutic potential of certain additional FGFs (e.g. FGF1 and FGF15/FGF19). This review presents a brief overview of the FGF family, describing the mode of action of the different FGFs subgroups, and focuses on FGF1 and FGF15/FGF19, which appear to also represent promising new targets for the treatment of obesity and type 2 diabetes.
Resumo:
Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
This thesis clarifies how the concept of tian functions in Chinese thought, and what tianren heyi (the continuity between tian and humans) means in the Chinese context. With a new interpretation about tianren heyi, I provide a new contribution for understanding these Chinese concepts for an English speaking audience. Tian is not a fixed concept like the idea of heaven, rather, it can be the principle for one’s immanent world. The meaning of the term changes depending on the context it is being used in, and can also be neutral when necessary. Continuity means that there is a resonance and reciprocity in the way these aspects of cosmology emerge together. Humans and tian are not being unified or connected—there is simply continuity between them. What happens is that a productive relationship between them produces depth, harmony, and enhanced significance. Through the interaction between humanity and tian, the human world gains order, and from the perspective of tian, gains harmony. This different understanding the continuity between humanity and tian leads to a new understanding of timing or the appropriateness in li. In the process of practice and self cultivation, it is seen that li is also an idea that is not fixed to one single interpretation as it is connected with timing and appropriateness. The Classical Chinese concept of “Person” (ren 人), as the concrete context of li, is the centre of this practice. Because of the unfixed natures of tian and li, one needs to be flexible in order to cater to their demands. This embodies the freedom of the subject in Chinese thought. As the outcome of li, the social and political structure is shaped in this process, the examples being the models of “great union” and “small tranquillity” (Chapter 3) in Chinese tradition.
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.
Resumo:
La eliminación de barreras entre países es una consecuencia que llega con la globalización y con los acuerdos de TLC firmados en los últimos años. Esto implica un crecimiento significativo del comercio exterior, lo cual se ve reflejado en un aumento de la complejidad de la cadena de suministro de las empresas. Debido a lo anterior, se hace necesaria la búsqueda de alternativas para obtener altos niveles de productividad y competitividad dentro de las empresas en Colombia, ya que el entorno se ha vuelto cada vez más complejo, saturado de competencia no sólo nacional, sino también internacional. Para mantenerse en una posición competitiva favorable, las compañías deben enfocarse en las actividades que le agregan valor a su negocio, por lo cual una de las alternativas que se están adoptando hoy en día es la tercerización de funciones logísticas a empresas especializadas en el manejo de estos servicios. Tales empresas son los Proveedores de servicios logísticos (LSP), quienes actúan como agentes externos a la organización al gestionar, controlar y proporcionar actividades logísticas en nombre de un contratante. Las actividades realizadas pueden incluir todas o parte de las actividades logísticas, pero como mínimo la gestión y ejecución del transporte y almacenamiento deben estar incluidos (Berglund, 2000). El propósito del documento es analizar el papel de los Operadores Logísticos de Tercer nivel (3PL) como promotores del desempeño organizacional en las empresas colombianas, con el fin de informar a las MIPYMES acerca de los beneficios que se obtienen al trabajar con LSP como un medio para mejorar la posición competitiva del país.
Resumo:
The enteric nervous system (ENS) modulates a number of digestive functions including well known ones, i.e. motility, secretion, absorption and blood flow, along with other critically relevant processes, i.e. immune responses of the gastrointestinal (GI) tract, gut microbiota and epithelial barrier . The characterization of the anatomical aspects of the ENS in large mammals and the identification of differences and similarities existing between species may represent a fundamental basis to decipher several digestive GI diseases in humans and animals. In this perspective, the aim of the present thesis is to highlight the ENS anatomical basis and pathological aspects in different mammalian species, such as horses, dogs and humans. Firstly, I designed two anatomical studies in horses: “Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter”. “Localization of 5-hydroxytryptamine 4 receptor (5-HT4R) in the equine enteric nervous system”. Then I focused on the enteric dysfunctions, including: A primary enteric aganglionosis in horses: “Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis”. A diabetic enteric neuropathy in dogs: “Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and diabetic dogs”. An enteric neuropathy in human neurological patients: “Functional and neurochemical abnormalities in patients with Parkinson's disease and chronic constipation”. The physiology of the GI tract is characterized by a high complexity and it is mainly dependent on the control of the intrinsic nervous system. ENS is critical to preserve body homeostasis as reflect by its derangement occurring in pathological conditions that can be lethal or seriously disabling to humans and animals. The knowledge of the anatomy and the pathology of the ENS represents a new important and fascinating topic, which deserves more attention in the veterinary medicine field.
Resumo:
The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.