942 resultados para Yield embryos
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to investigate the role of GnRH on the preimplantation development of mouse embryos in vitro. GnRH-I, GnRH-II, and GnRH agonists: Des-Gly, Des-Trp and histrelin did not improve embryo development. However, treatment with the specific GnRH antagonist SB-75 blocked embryo development at morula stage. The inhibition of embryo development by SB-75 could be rescued by the addition of histrelin. To determine which intracellular signaling cascade is involved following binding of GnRH to the GnRHR, embryos were cultured in the presence of specific PKC (GFX) or PKA (SQ22536) inhibitors. The PKC inhibitor blocked embryo development at a similar stage as SB-75, whereas SQ22536 had an inhibitory effect, diminishing blastocyst formation and hatched rates. There are evidences that GnRH has an essential autocrine effect on mouse embryonic development via GnRHR, probably by activating PKC signaling cascade while the inhibition of the GnRH signaling does not activate apoptotic mechanisms involving caspase-3. In another experiment, development in vitro of embryos from Chinese Meishan (M) and occidental white crossbred (WC) females were investigated after improving the vitrification protocol for pig embryos. Efficient cryopreservation of zona pellucida-intact porcine embryos and studies of the difference among breeds could greatly impact the swine industry. The percentage of embryos surviving 24 h after cryopreservation without lysis or degeneration was higher for M (72%) than WC (44%). However, in vitro development of embryos that survived cryopreservation was not different between M and WC at the expanded (64%) or hatched (22%) blastocyst stages. Developmental rates were significantly higher for control embryos than frozen embryos from both breeds at expanded blastocyst stage, but not at hatched blastocyst stage. Rates of expanded blastocyst formation did not differ between M and WC control embryos (98 and 95%, respectively). With a new procedure to warm vitrified pig embryos, the survival rates may be improved. The optimal stages to vitrify pig embryos using the microdroplet method ranges from late compact morula to early expanded blastocyst. The results suggest that M embryos have a higher capacity to survive the vitrification process than WC embryos. O objetivo do presente estudo foi investigar a importância do GnRH no desenvolvimento embrionário precoce em camundongos. GnRH-I, GnRH-II e os GnRH agonistas: Des-Gly, Des-Trp e histrelina não incrementaram o desenvolvimento embrionário. Entretanto, o tratamento com SB-75, um antagonista específico do GnRH, bloqueou o desenvolvimento embrionário no estádio de mórula. A inibição do desenvolvimento embrionário pelo SB-75 pôde ser revertida com a adição de histrelina. Para determinar a cascata do sinal intracelular desencadeada pela ligação do GnRH com o seu receptor, embriões foram cultivados na presença de inibidores específicos da PKC (GFX) e da PKA (SQ22536). O inibidor da PKC bloqueou o desenvolvimento embrionário em estádio similar ao bloqueio mediado pelo SB- 75, enquanto o SQ22536 teve efeito inibitório diminuindo a formação de blastocisto e taxas de eclosão. Os resultados sugerem que o GnRH tem um efeito autócrino essencial no desenvolvimento embrionário através do GnRHR, provavelmente, ativando a cascata da PKC. Por outro lado, a inibição do sinal do GnRH não ativa mecanismos apoptóticos que involvam caspase-3. Em outro experimento, foi investigado o desenvolvimento in vitro de embriões da raça Meishan (M) e branco cruzado (WC) após vitrificação pelo método microgota. O desenvolvimento de protocolos eficientes para criopreservação de embriões suínos com a zona pelúcida intacta e a avaliação das diferenças entre raças pode ter um significativo impacto na suinocultura. A percentagem de embriões que sobreviveram à criopreservação depois de 24 h foi maior na M (72%) do que na WC (44%). No entanto, o desenvolvimento in vitro dos embriões que sobreviveram à criopreservação não foi diferente entre M e WC nos estádios de blastocisto expandido (64%) ou eclodido (22%). Os índices de desenvolvimento foram significativamente mais altos para os embriões controle do que para os embriões vitrificados nas duas raças no estádio de blastocisto expandido, porém não foram diferentes para o estádio de blastocisto eclodido. A formação de blastocisto expandido não diferiu entre os embriões controle M e WC (98 e 95%, respectivamente). Com o novo procedimento (“hot warm”) para descongelar embriões vitrificados pelo método de microgota, pode-se aumentar dos índices de sobrevivência. Os melhores estádios embrionários para a vitrificação de embriões suínos variam de mórula compacta tardia até blastocisto expandido inicial. Os resultados sugerem que embriões M têm mais capacidade de sobreviver ao processo de vitrificação do que embriões WC.
Resumo:
Maize demand for food, livestock feed, and biofuel is expected to increase substantially. The Western U.S. Corn Belt accounts for 23% of U.S. maize production, and irrigated maize accounts for 43 and 58% of maize land area and total production, respectively, in this region. The most sensitive parameters (yield potential [YP], water-limited yield potential [YP-W], yield gap between actual yield and YP, and resource-use efficiency) governing performance of maize systems in the region are lacking. A simulation model was used to quantify YP under irrigated and rainfed conditions based on weather data, soil properties, and crop management at 18 locations. In a separate study, 5-year soil water data measured in central Nebraska were used to analyze soil water recharge during the non-growing season because soil water content at sowing is a critical component of water supply available for summer crops. On-farm data, including yield, irrigation, and nitrogen (N) rate for 777 field-years, was used to quantify size of yield gaps and evaluate resource-use efficiency. Simulated average YP and YP-W were 14.4 and 8.3 Mg ha-1, respectively. Geospatial variation of YP was associated with solar radiation and temperature during post-anthesis phase while variation in water-limited yield was linked to the longitudinal variation in seasonal rainfall and evaporative demand. Analysis of soil water recharge indicates that 80% of variation in soil water content at sowing can be explained by precipitation during non-growing season and residual soil water at end of previous growing season. A linear relationship between YP-W and water supply (slope: 19.3 kg ha-1 mm-1; x-intercept: 100 mm) can be used as a benchmark to diagnose and improve farmer’s water productivity (WP; kg grain per unit of water supply). Evaluation of data from farmer’s fields provides proof-of-concept and helps identify management constraints to high levels of productivity and resource-use efficiency. On average, actual yields of irrigated maize systems were 11% below YP. WP and N-fertilizer use efficiency (NUE) were high despite application of large amounts of irrigation water and N fertilizer (14 kg grain mm-1 water supply and 71 kg grain kg-1 N fertilizer). While there is limited scope for substantial increases in actual average yields, WP and NUE can be further increased by: (1) switching surface to pivot systems, (2) using conservation instead of conventional tillage systems in soybean-maize rotations, (3) implementation of irrigation schedules based on crop water requirements, and (4) better N fertilizer management.
Resumo:
ABSTRACT This long term study focuses on testing various hazelnut cultivars for yield, nut quality and disease resistance. There are various cultivars that are being tested for these desired traits but only the Grand Traverse and Skinner will be applicable for the results of this localized study. The desired traits of commercial nut production are best matched by these two cultivars. Results from previous harvests will be used to draw trends to recommend commercially functional cultivars in Eastern Nebraska.
Resumo:
The aim of this work was to evaluate the effect of cryopreservation protocols on subsequent development of in vitro produced bovine embryos under different culture conditions. Expanded in vitro produced blastocysts (n = 600) harvested on days 7-9 were submitted to controlled freezing [slow freezing group: 10% ethylene glycol (EG) for 10 min and 1.2 degrees C/min cryopreservation]; quick-freezing [rapid freezing group: 10% EG for 10 min, 20% EG + 20% glycerol (Gly) for 30 s]; or vitrification [vitrification group: 10% EG for 10 min, 25% EG + 25% Gly for 30 s] protocols. Control group embryos were not exposed to cryoprotectant or cryopreservation protocols and the hatching rate was evaluated on day 12 post-insemination. In order to evaluate development, frozen-thawed embryos were subjected to granulosa cell co-culture in TCM199 or SOFaa for 4 days. Data were analyzed by PROC MIXED model using SAS Systems for Windows (R). Values were significant at p < 0.05. The hatching rate of the control group was 46.09%. In embryos cultured in TCM199, slow freezing and vitrification group hatching rates were 44.65 +/- 5.94% and 9.43 +/- 6.77%, respectively. In embryos cultured in SOFaa, slow freezing and vitrification groups showed hatching rates of 11.65 +/- 3.37 and 8.67 +/- 4.47%, respectively. In contrast, the rapid freezing group embryos did not hatch, regardless of culture medium. The slow freezing group showed higher hatching rates than other cryopreservation groups. Under such conditions, controlled freezing (1.2 degrees C/min) can be an alternative to cryopreservation of in vitro produced bovine embryos.
Resumo:
The yolk sac is an embryonic membrane that is essential for the embryo's initial survival in many mammals. It also plays an important role in the production of proteins necessary for development. We studied proteins of the yolk sac in bovine embryos at up to 40 days of gestation. We examined the yolk sac of 17 bovine embryos at different gestational periods, measuring a-fetoprotein, alpha-1-antitrypsin, and transferrin. This experiment was carried out by Western blot technique, associated with electrophoresis on a 6% sodium dodecyl sulfate polyacrylamide gel. Mouse monoclonal antibody anti-human-alpha-fetoprotein, mouse antibody anti-human-transferrin and rabbit polyclonal anti-human-alpha-1-antitrypsin were used as primary antibodies, and conjugated peroxidase as a secondary antibody. We detected the three proteins in some of the yolk sac samples; however, the bands in some specimens (samples) were weak, maybe a result of poor antigen-antibody reaction, since the antibodies used in this study were not specific to bovine proteins. The fact that weak bands appeared might be due to a weak cross-reaction.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
Citrus Variegated Chlorosis (CVC) is currently present in approximately 40% of citrus plants in Brazil and causes an annual loss of around 120 million US dollars to the Brazilian citrus industry. Despite the fact that CVC has been present in Brazil for over 20 years, a relationship between disease intensity and yield loss has not been established. In order to achieve this, an experiment was carried out in a randomized block design in a 3 x 2 factorial scheme with 10-year-old Natal sweet orange. The following treatments were applied: irrigation with 0, 50 or 100% of the evapotranspiration of the crop, combined with natural infection or artificial inoculation with Xylella fastidiosa, the causal agent of CVC. The experiment was evaluated during three seasons. A negative exponential model was fitted to the relationships between yield versus CVC severity and yield versus Area Under Disease Progress Curve (AUDPC). In addition, the relationship between yield versus CVC severity and canopy volume was fitted by a multivariate exponential model. The use of the AUDPC variable showed practical limitations when compared with the variable CVC severity. The parameter values in the relationship of yieldCVC severity were similar for all treatments unlike in the multivariate model. Consequently, the yieldCVC intensity relationship (with 432 data points) could be described by one single model: y = 114.07 exp(-0.017 x), where y is yield (symptomless fruit weight in kg) and x is disease severity (R2 = 0.45; P < 0.01).
Resumo:
The identification of quantitative trait loci (QTL) and marker-assisted selection with a view to breeding programs have aroused great interest, including for cashew improvement. This study identified QTL for yield-related traits: nut weight, male and hermaphrodite flowers. The traits were evaluated in 71 F-1 genotypes of the cross CCP 1001 x CP 96. The methods of interval mapping and multiple QTL mapping were applied to identify QTL. Eleven QTL were detected: three for nut weight, four for male flowers and four for hermaphrodite flowers. The QTL accounted for 3.79 to 12.98 % of the total phenotypic variance and had phenotypic effects of -31.81 to 34.25 %. The potential for marker-assisted selection of the QTL hf-2f and hf-3m is great and the phenotypic effects and percentage of phenotypic variation higher than of the others.
Resumo:
Sewage sludge has been used to fertilize coffee, increasing the risk of metal contamination in this crop. The aim of this work was to study the effects of Cd, Zn and Ni in adult coffee plants growing under field conditions. Seven-year-old coffee plants growing in the field received one of three;loses of Cd, Zn or Ni: 15,45 and 90 g Cd plant(-1); 35, 105 and 210 g Ni plant(-1); and 100, 300 and 600 g Zn plant(-1), with all three metals in the form of sulphate salts. After three months, we noticed good penetration of the three metals into the soil, especially in the first 50 cm, which is the region where most coffee plant roots are concentrated. Leaf concentrations of K, Ca, Mg, S, B, Cu, Fe and Mn were nor affected. N levels did not change with the application of Ni or Zn but were reduced with either 45 or 90 g Cd plant(-1). Foliar P concentrations decreased with the addition of 45 and 90 g Cd plant(-1) and 600 g Zn plant(-1). Zn levels in leaves were not affected by the application of Cd or Ni. The highest concentrations. of Zn were found in branches (30-230 mg kg(-1)), leaves (7-35 mg kg(-1)) and beam (4-6.5 mg kg(-1)); Ni was found in leaves (4-45 mg kg(-1)), branches (3-18 mg kg(-1)) and beans (1-5 mg kg(-1)); and Cd was found in branches (0-6.2 mg kg(-1)) and beans (0-1.5 mg kg(-1)) but was absent in leaves. The mean yield of two harvests was not affected by Ni, but it decreased at the highest dose of Zn (600 g plant(-1)) and the two higher doses of Cd (45 and 90 g plant(-1)). Plants died when treated with the highest dose of Cd and showed symptoms of toxicity with the highest dose of Zn. Nevertheless, based on the amounts of metal used and the results obtained, we conclude that coffee plants are highly tolerant to the three metals tested. Moreover, even at high doses, there was very little transport to the beans, which is the part consumed by humans. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.
Resumo:
The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of Sao Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of Sao Paulo.