965 resultados para Window gardening.
Resumo:
The interaction of a 3x10(19) W/cm(2) laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude similar to 10(4) A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.
Resumo:
Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.
Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.
Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.
Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.
Resumo:
PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi
Resumo:
Previous work by the authors Walker et al. [2007b. Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chemical Engineering Science 62, 3832–3838] illustrated that Raman spectroscopy could be used to provide 3-D maps of the concentration and chemical structure of particles in motion in a fluidised bed, within a relatively short (120 s) time window. Moreover, we reported that the technique, as outlined, has the potential to give detailed in-situ information on how the structure and composition of granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. In this study we extended the original work by shortening the time window of the Raman spectroscopic analysis to 10 s, which has allowed the in-situ real-time characterisation of a fluidised bed granulation process. Here we show an important new use of the technique which allows in-situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra using a probe positioned within the fluidised bed on a long-travel x–y–z stage. In these experiments the absolute Raman intensity is used to provide a direct measure of the amount of any given material in the probed volume, i.e. a particle density. Particle density profiles have been calculated over the granulation time and show how the volume of the fluidised bed decreases with an increase mean granule size. The Raman spectroscopy analysis indicated that nucleation/coalescence in this co-melt fluidised hot melt granulation system occurred over a relatively short time frame (t<30 s). The Raman spectroscopic technique demonstrated accurate correlation with independent granulation experiments which provided particle size distribution analysis. The similarity of the data indicates that the Raman spectra accurately represent solids ratios within the bed, and thus the techniques quantitative capabilities for future use in the pharmaceutical industry.
Resumo:
Saturated output has been observed for both Ne and Ni-like X-ray lasers when Pumped in the transient mode. As these 'normal' transitions display very high gain, attempts have been made to observe a 2p --> 2s inner shell transition in Ne-like ions, which scale well towards the water window. Modelling of the pump conditions for Ge lasing at 6.2 run is presented. As the predicted gain is low the experiment was set up for 18 mm targets. Shots were taken on Ti, Fe, Ni and Ge. A similar to1.5 ps travelling wave pulse is applied at various times after the peak of a long, preforming Pulse. Various pump conditions were attempted but no inner shell X-ray laser was detected.
Resumo:
The cathodic and anodic: potential limit of eleven different ionic liquids were determined at a mercury hemisphere electrode. Ionic liquids containing the phosphonium cation (tri(n-hexyl)tetradecylphosphonium, [P-14.6,P-6.6](+)) give the largest potential window, especially When Coupled to a trifluorotris(pentafluoroethyl)- [FAP](-). or bis(trifluoromethanesulfonyl)imide, [NTf2](-), anion.
Resumo:
New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.
Resumo:
The proton radiography technique has been used to investigate the incidence of a 3 x10(19) W/cm(2) infrared pulse with a 125 mu m-diameter gold wire. The laser interaction is observed to drive the growth of a radial electric field similar to 10(10) V/m on the surface of the wire which rises and decays over a temporal window of 20 ps. Such studies of the ultrafast charging of a solid irradiated at high-intensity may be of relevance to schemes for laser-driven ion acceleration and the fast-ignitor concept for inertial confinement fusion.
Resumo:
Background: Bronchoscopic bronchoalveolar lavage in children to investigate bronchia disorders such as asthtna has both ethical and procedural difficulties.
Objective: The aim of this study was to establish a standardized non-bronchoscopic method to perform bronchoalveolar lavage in children attending for elective surgery to obtain normal cellular data.
Methods: Bronchoalveolar lavage was performed on normal children (n= 55) by infusing saline (20 mL) through an 8 FG suction catheter passed after endotracheal intubation. Oxygen saturation, heart and respiratory rate were monitored during the bronchoalveolar lavage procedure. Cellular analysis and total protein estimation of the lavage fluid were performed. Epithelial lining fluid volume was calculated (n = 15) using the urea dilution method.
Results: The procedure was well tolerated by all children. Total cell count and differential cell count for children (macrophages 70.8 ± 2.3%, lymphocytes 3.8 ± 0.6%, neutrophils 5,7 ± 1.0%, eosinophils 0.14 ± 0.03%. epithelial cells 19.6 ± 2.1%, mast cells 0.21 ± 0.02%) were similar to those reported for adults. Age and sex comparisons revealed no differences between groups. The mean total protein recovered in the cell free supernatant was 49.72 ± 4.29 mg/L and epithelial lining fluid volume was 0.82 ± 0.11% of return lavageate.
Conclusion This method allows bronchoalveolar lavage to be performed safely and quickly on children attending for routine elective surgery. Using this method and taking the ‘window of opportunity’ of elective surgery, the presence or absence of airway inflammation could be studied in children with various patterns of asthma during relatively asymptomatic periods.
Resumo:
Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (a w) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at a w values of = 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Polypropylene (PP), a semi-crystalline material, is typically solid phase thermoformed at temperatures associated with crystalline melting, generally in the 150° to 160°Celsius range. In this very narrow thermoforming window the mechanical properties of the material rapidly decline with increasing temperature and these large changes in properties make Polypropylene one of the more difficult materials to process by thermoforming. Measurement of the deformation behaviour of a material under processing conditions is particularly important for accurate numerical modelling of thermoforming processes. This paper presents the findings of a study into the physical behaviour of industrial thermoforming grades of Polypropylene. Practical tests were performed using custom built materials testing machines and thermoforming equipment at Queen′s University Belfast. Numerical simulations of these processes were constructed to replicate thermoforming conditions using industry standard Finite Element Analysis software, namely ABAQUS and custom built user material model subroutines. Several variant constitutive models were used to represent the behaviour of the Polypropylene materials during processing. This included a range of phenomenological, rheological and blended constitutive models. The paper discusses approaches to modelling industrial plug-assisted thermoforming operations using Finite Element Analysis techniques and the range of material models constructed and investigated. It directly compares practical results to numerical predictions. The paper culminates discussing the learning points from using Finite Element Methods to simulate the plug-assisted thermoforming of Polypropylene, which presents complex contact, thermal, friction and material modelling challenges. The paper makes recommendations as to the relative importance of these inputs in general terms with regard to correlating to experimentally gathered data. The paper also presents recommendations as to the approaches to be taken to secure simulation predictions of improved accuracy.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
We analyze a system inwhich, due to entanglement between the spin and spatial degrees of freedom, the reduced transmitted state has the shape of the freely propagating pulse translated in the complex coordinate plane. In the case an apparently “superluminal” advancement of the pulse, the delay amplitude distribution is found to be a peculiar approximation to the Dirac d function, and the transmission coefficient exhibits a well-defined superoscillatory window. Analogies with potential tunneling and Wheeler’s delayed choice experiment are highlighted.