958 resultados para Weed chemical control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmalemmal injury is a frequent event in the life of a cell. Physical disruption of the plasma membrane is common in cells that operate under conditions of mechanical stress. The permeability barrier can also be breached by chemical means: pathogens gain access to host cells by secreting pore-forming toxins and phospholipases, and the host's own immune system employs pore-forming proteins to eliminate both pathogens and the pathogen-invaded cells. In all cases, the influx of extracellular Ca(2+) is being sensed and interpreted as an "immediate danger" signal. Various Ca(2+)-dependent mechanisms are employed to enable plasma membrane repair. Extensively damaged regions of the plasma membrane can be patched with internal membranes delivered to the cell surface by exocytosis. Nucleated cells are capable of resealing their injured plasmalemma by endocytosis of the permeabilized site. Likewise, the shedding of membrane microparticles is thought to be involved in the physical elimination of pores. Membrane blebbing is a further damage-control mechanism, which is triggered after initial attempts at plasmalemmal resealing have failed. The members of the annexin protein family are ubiquitously expressed and function as intracellular Ca(2+) sensors. Most cells contain multiple annexins, which interact with distinct plasma membrane regions promoting membrane segregation, membrane fusion and--in combination with their individual Ca(2+)-sensitivity--allow spatially confined, graded responses to membrane injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysfunction of the senses of taste and smell may strongly affect our lives. During the last years reliable techniques for the standardized investigation of the 2 senses have been introduced to clinical routine. These techniques are highly standardized and can be easily used, for example, for quality control before and after surgery. Although there are proven therapeutic approaches to taste or smell loss, by far not all patients can be helped. New ideas need to tested within rigorous double-blind studies. The regenerative capacity within the chemical senses provides a major basis for hopes on therapeutic success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that spraying a distasteful substance (quinine) on a bird's feather cover reduced short-term feather pecking. The present experiment evaluated if other substances offer similar or better protection against feather pecking.;One hundred and twenty birds were divided into 12 groups of 10 birds each. Over a period of 10 days the birds' response to 10 feathers coated with one of the 11 distasteful substances was observed and recorded. Feathers were soaked in a 1% garlic solution, 1% almond oil, 1% clove oil, 1% clove solution, quinine sulphate solution in four concentrations (0.1%, 1%, 2%, 4%), 0.6 mol magnesium chloride solution, anti-peck spray or an angostura solution. The control group received uncoated feathers. The number of feathers plucked, rejected or eaten was counted 60 min after presenting the feathers. All substances reduced feather plucking (p < 0.0001) and consumption (p < 0.0001) significantly, compared to uncoated feathers. Quinine concentrations of 2% and 4% were most effective. This study was the first to investigate the aversive potential of different substances to deter feather peckers from the feathers of other birds. The findings may be useful in the development of spraying devices to prevent feather pecking when other management tools fail. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates whether the Swiss monitoring programme for foreign substances in animal products fulfils basic epidemiological quality requirements, and identifies possible sources of bias in the selection of samples. The sampling was analysed over a 4-year period (2002-05). The sampling frame in 37 participating abattoirs covered 51% of all slaughtered pigs, 73% of calves, 68% of beef and 36% of cows. The analysis revealed that some sub-populations as defined by the region of origin were statistically over-represented while others were under-represented. The programme that is in accordance with European Union requirements contained some relevant bias. Patterns of under-sampled regions characterized by management type differences were identified. This could lead to an underestimate of the number of contaminated animals within the programme. Although the current sampling was stratified and partially risk-based, its efficiency could be improved by adopting a more targeted approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive plant species threaten natural areas by reducing biodiversity and altering ecosystem functions. They also impact agriculture by reducing crop and livestock productivity. Millions of dollars are spent on invasive species control each year, and traditionally, herbicides are used to manage invasive species. Herbicides have human and environmental health risks associated with them; therefore, it is essential that land managers and stakeholders attempt to reduce these risks by utilizing the principles of integrated weed management. Integrated weed management is a practice that incorporates a variety of measures and focuses on the ecology of the invasive plant to manage it. Roadways are high risk areas that have high incidence of invasive species. Roadways act as conduits for invasive species spread and are ideal harborages for population growth; therefore, roadways should be a primary target for invasive species control. There are four stages in the invasion process which an invasive species must overcome: transport, establishment, spread, and impact. The aim of this dissertation was to focus on these four stages and examine the mechanisms underlying the progression from one stage to the next, while also developing integrated weed management strategies. The target species were Phragmites australis, common reed, and Cisrium arvense, Canada thistle. The transport and establishment risks of P. australis can be reduced by removing rhizome fragments from soil when roadside maintenance is performed. The establishment and spread of C. arvense can be reduced by planting particular resistant species, e.g. Heterotheca villosa, especially those that can reduce light transmittance to the soil. Finally, the spread and impact of C. arvense can be mitigated on roadsides through the use of the herbicide aminopyralid. The risks associated with herbicide drift produced by application equipment can be reduced by using the Wet-Blade herbicide application system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-radical retrograde-precipitation polymerization, FRRPP in short, is a novel polymerization process discovered by Dr. Gerard Caneba in the late 1980s. The current study is aimed at gaining a better understanding of the reaction mechanism of the FRRPP and its thermodynamically-driven features that are predominant in controlling the chain reaction. A previously developed mathematical model to represent free radical polymerization kinetics was used to simulate a classic bulk polymerization system from the literature. Unlike other existing models, such a sparse-matrix-based representation allows one to explicitly accommodate the chain length dependent kinetic parameters. Extrapolating from the past results, mixing was experimentally shown to be exerting a significant influence on reaction control in FRRPP systems. Mixing alone drives the otherwise severely diffusion-controlled reaction propagation in phase-separated polymer domains. Therefore, in a quiescent system, in the absence of mixing, it is possible to retard the growth of phase-separated domains, thus producing isolated polymer nanoparticles (globules). Such a diffusion-controlled, self-limiting phenomenon of chain growth was also observed using time-resolved small angle x-ray scattering studies of reaction kinetics in quiescent systems of FRRPP. Combining the concept of self-limiting chain growth in quiescent FRRPP systems with spatioselective reaction initiation of lithography, microgel structures were synthesized in a single step, without the use of molds or additives. Hard x-rays from the bending magnet radiation of a synchrotron were used as an initiation source, instead of the more statistally-oriented chemical initiators. Such a spatially-defined reaction was shown to be self-limiting to the irradiated regions following a polymerization-induced self-assembly phenomenon. The pattern transfer aspects of this technique were, therefore, studied in the FRRP polymerization of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), a thermoreversible and ionic hydrogel, respectively. Reaction temperature increases the contrast between the exposed and unexposed zones of the formed microgels, while the irradiation dose is directly proportional to the extent of phase separation. The response of Poly (NIPAm) microgels prepared from the technique described in this study was also characterized by small angle neutron scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.