962 resultados para Weathered soils
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1334/thumbnail.jpg
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.
Resumo:
Under defined laboratory and field conditions, the investigation of percolating water through soil columns (podsol, lessive and peat) down to groundwater table shows that the main factors which control the chemical characteristics of the percolates are: precipitation, evaporation, infiltration rate, soil type, depth and dissolved organic substances. Evaporation and percolation velocity influences the Na+, SO4**2- and Cl- concentrations. Low percolation velocity leads also to longer percolation times and water logging in less permeable strata, which results in lower Eh-values and higher CO2-concentrations due to low gas exchange with the atmosphere. Ca2+ and Mg2+ carbonate concentration depends on soil type and depth. Metamorphism and decomposition of organic substances involve NO3 reduction and K+, Mg2+, SO4**2-, CO2, Fe2+,3+ transport. The analytical data were evaluated with multi variate statistical methods.
Resumo:
The Centennial deposit is a high grade (~8% U3O8), deeply buried (~950m), unconformity-related U deposit located in the south-central region of the Athabasca Basin in northern Saskatchewan, Canada. The mineral chemistry of fine fractions (<63 μm) of soils from grids above the Centennial deposit were examined to understand possible controls on the geochemistry and radiogenic 207Pb/206Pb ratios measured in the clay-size (<2 μm) fractions used for exploration. Soil samples distal and proximal to the deposit projection to the surface and geophysically defined structures were selected. Mineral abundances were determined using the scanning electron microscope and Mineral Liberation Analysis. Zircon was the only U-rich mineral identified with modal abundances >0.02% by weight. Monazite, which can be U-rich, was identified, but not in significant abundances. The source of the zircon and other heavy minerals is interpreted to be from sub-cropping sources that are >100 km up-ice from Centennial. Trace element analysis using laser ablation inductively coupled plasma mass spectrometry of hydroseparated zircon grains indicate that zircon abundances and zircon Pb concentrations in surficial samples have minimal effect on the radiogenic 207Pb/206Pb ratios in the clay-fraction of the samples, with the dominant source of radiogenic Pb being clay mineral surfaces that trapped Pb during secondary dispersion from the Centennial uranium deposit through faults and fractures to the surface. The REE patterns indicate HREE enrichment in the clay-fractions of samples that have higher abundances of zircon in the <20 μm fraction. Immobile elements such as HREE that are concentrated in zircon can be used as indicators of radiogenic Pb being sourced from minerals at the surface rather than being sourced from secondary dispersion from deeply buried U deposits.
Resumo:
The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti-bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well-drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree.
Resumo:
This bulletin is a further compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1 The loess and glacial till materials of Iowa; an investigation of their physical and chemical properties and techniques for processing them to increase their all-weather stability for road construction. The research, started in 1950, was done by the Iowa Engineering Experiment Station at Iowa State University under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.
Resumo:
This project was initiated to gain a better understanding of the phenomena which affect the engineering behavior of soils containing colloidal size particles and to find chemical methods of treatment which could improve the engineering performance of such soils.
Resumo:
This project was initiated to gain a better understanding of the phenomena which affect the engineering behavior of soils containing colloidal size particles and to find chemical methods of treatment which could improve the engineering performance of such soils.