996 resultados para Wave guides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric method that extracts the ocean wave directional spectra from synthetic aperture radar (SAR) image is presented. The 180 degrees ambiguity of SAR image and the loss of information beyond the azimuthal cutoff can be overcome with this method. The ocean wave spectra can be obtained from SAR image directly by using iteration inversion mapping method with forward nonlinear mapping. Some numerical experiments have been made by using ERS-1 satellite SAR imagette data. The ocean wave direction retrieved from SAR imagette data is in agreement with the wind direction from the scatterometer data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Song and Banner (2002, henceforth referred to as SB02) used a numerical wave tank (developed by Drimer and Agnon, and further refined by Segre, henceforth referred to as DAS) to study the wave breaking in the deep water, and proposed a dimensionless breaking threshold that based on the behaviour of the wave energy modulation and focusing during the evolution of the wave group. In this paper, two modified DAS models are used to further test the SB02's results, the first one (referred to MDAS1) corrected many integral calculation errors appeared in the DAS code, and the second one (referred to MDAS2) replaced the linear boundary element approximation of DAS into the cubic element on the free surface. Researches show that the results of MDAS1 are the same with those of DAS for the simulations of deep water wave breaking, but, the different values of the wavemaker amplitude, the breaking time and the maximum local average energy growth rate delta(max) for the marginal breaking cases are founded by MDAS2 and MDAS1. However, MDAS2 still satisfies the SB02' s breaking threshold. Furthermore, MDAS1 is utilized to study the marginal breaking case in the intermediate water depth when wave passes over a submerged slope, where the slope is given by 1 : 500, 1 : 300, 1 : 150 or 1 : 100. It is found that the maximum local energy density U increases significantly if the slope becomes steeper, and the delta(max) decreases weakly and increases intensively for the marginal recurrence case and marginal breaking case respectively. SB02's breaking threshold is still valid for the wave passing over a submerged slope gentler than 1 : 100 in the intermediate water depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface increases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose's experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed. Two experiments into the use of the radar system were carried out at two sites, respectively, for calibration process in Zhangzi Island of the Yellow Sea, and for validation in the Yellow Sea and South China Sea. Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method. The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy. The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy. In particular, it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters, especially in detecting the significant wave height below 1.0 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, interfacial waves in three-layer stratified fluid with background current are investigated using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory, and the Kelvin-Helmholtz instability of interfacial waves is studied. As expected, for three-layer stratified fluid with background current, the first-order asymptotic solutions (linear wave solutions), dispersion relation and the second-order asymptotic solutions derived depend on not only the depths and densities of the three-layer fluid but also the background current of the fluids, and the second-order Stokes wave solutions of the associated elevations of the interfacial waves describe not only the second-order nonlinear wave-wave interactions between the interfacial waves but also the second-order nonlinear interactions between the interfacial waves and currents. It is also noted that the solutions obtained from the present work include the theoretical results derived by Chen et al (2005) as a special case. It also shows that with the given wave number k (real number) the interfacial waves may show Kelvin-Helmholtz instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reservoir prediction techniques from prestack seismic are among the most important ones for exploration of lithologic hydrocarbon reservoir. In this paper, we set the turbidite fan sandstone reservoir in Liao-Zhong depress as our researching target, and aims to solve the apllication difficulties on pre-stack inversion in the area, where the drilling data is scarce and the reservoir is lateral varied. Meanwhile, AVO analysis and pre-stack inversion for gas-bearing detection is systematically researched. The seismic reflection characters of gas-bearing sandstone in turbidite fan with different fluid content are defined, after analyzing results from AVO seismic simulation and porous fluid replacement of real log data, and under the guides of the seismic characters from classical gas-bearing sandstone reservoir and numerical simulation for complicate gas-bearing sandstone. It is confirmed that detecting gas-bearing sandstone in turbidite fan via AVO technologies is feasible. In terms of AVO analysis, two AVO characters, fluid detection factor and product of intercept and gradient, can effectively identify top and bottom boundaries and lateral range of tuibidite gas sand by comparing real drilling data. Cross-plotting of near and far angle stack data could avoid the correlation existing in P-G analysis. After comparing the acoustic impedance inversions with routine stacked data and AVO intercept, impedance derived from AVO intercept attribute could reduce the acoustic impedance estimating error which is caused by AVO. On the aspect of elastic impedance inversion, the AVO information in the pre-stack gathers is properly reserved by creating partial angle stack data. By the far angle elastic impedance alone, the gas sand, with abnormally low range of values, can be identified from the background rocks. The boundary of gas sand can also be clearly determined by cross-plotting of near and far angle elastic impedances. The accuracy of far angle elastic impedance is very sensitive to the parameter K, and by taking the statistical average of Vp/Vs on the targeted section in key wells, the accuracy of low frequency trends is gurranteed; the intensive absorsion within the area of the gas sand, which tends to push the spectral of seismic data to the lower end, will cause errors on the inversion result of elastic impedance. The solution is to confine the inversion on the interested area by improving the wavelet. On the aspect of prestack AVA simultaneous inversion, the constraint of local rock-physical trends between velocities of P-wave、S-wave and density successfully removes the instability of inversion, thus improves the precision of the resulting elastic parameters. Plenty of data on rock properties are derived via AVO analysis and prestack seismic data inversion. Based on them, the fluid anomaly is analysized and lithological interpretation are conducted. The distribution of gas sand can be consistently determined via various of ways, such as cross-plotting of P and G attributes, near and far partial angle stack data, near and far angle elastic impedances, λρ and Vp/Vs, etc. The shear modulo and density are also reliable enough to be used for lithological interpretation. We successfully applied the AVO analysis and pre-stack inversion techniques to gas detecting for turbidite fan sand reservoir in Liao-Zhong depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Science Foundation of China (No. 10032040 and No. 49874013) and Joint Earthquake Science Foundation of China (No. 101119).