940 resultados para Water demand management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditionally, desertification research has focused on degradation assessments, whereas prevention and mitigation strategies have not sufficiently been emphasised, although the concept of sustainable land management (SLM) is increasingly being acknowledged. SLM strategies are interventions at the local to regional scale aiming at increasing productivity, protecting the natural resource base, and improving livelihoods. The global WOCAT initiative and its partners have developed harmonized frameworks to compile, evaluate and analyse the impact of SLM practices around the globe. Recent studies within the EU research project DESIRE developed a methodological framework that combines a collective learning and decision-making approach with use of best practices from the WOCAT database. In-depth assessment of 30 technologies and 8 approaches from 17 desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats such as water scarcity, soil and vegetation degradation, low production, climate change, resource use conflicts and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Water harvesting offers under-exploited opportunities for the drylands and the predominantly rainfed farming systems of the developing world. Recently compiled guidelines introduce the concepts behind water harvesting and propose a harmonised classification system, followed by an assessment of suitability, adoption and up-scaling of practices. Case studies go from large-scale floodwater spreading that make alluvial plains cultivable, to systems that boost cereal production in small farms, as well as practices that collect and store water from household compounds. Once contextualized and set in appropriate institutional frameworks, they can form part of an overall adaptation strategy for land users. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the new EU CASCADE project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research in prehistoric sites of lakes and bogs around the Alps started more than 150 years ago. In 2004 Switzerland took the initiative to propose an international UNESCO world heritage nomination, which was successful in 2011. Six countries – Austria, France, Germany, Italy, Slovenia and Switzerland – joined forces to obtain the precious label for an invisible cultural heritage of outstanding universal value. Archaeological sites under water or in bogs are of special importance because objects made of organic material like wood, bark, plant fibres and others survive in this milieu for hundred or thousands of years. The alpine pile-dwelling sites offer a highly precise dating possibility by using dendrochronology. All in all these sites have a high scientific potential but run also risks of long term conservation. Beside the scientific chances there are risks to consider: public access is difficult and a major challenge. New ideas are demanded to keep alive public interest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A survey of development priorities and needs for water related information, including information on Water User Associations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proceedings of the 9th International Conference of the International Soil conservation Organisation (ISCO-9), from 26-30 August 1996 in Bonn, Germany