990 resultados para WATER OXIDATION
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective. To investigate the modes of water supply and the perception concerning the problems caused by this water among residents of a neighborhood without public supply of water, settled in an area previously used as a garbage dump in the city of Manaus, Brazil. Methods. One hundred and sixty-two semi-structured household interviews were conducted. In addition, a focal group with teachers from a local public school and a meeting with residents were held. The instruments employed focused on the perception and modes of water use and on the process of exposure to chemical contaminants through water. Results. Untreated well water was used by most families. This water was considered to be ""good"" by 64.8% of the individuals interviewed. Most residents (88.3%) declared knowledge about the garbage dump. Of these, 77.6% stated that the garbage dump caused health and environmental problems. However, qualitative analysis of the responses revealed that the residents were not aware of contamination by chemical elements or of the consequences of such contamination. The activities carried out with teachers revealed that they were partially aware of the problem, but did not design interventions to address the issue. In a meeting with neighborhood residents, the presence of social activism concerning the problem was identified, but it did not extend beyond the neighborhood or reach governmental spheres. Conclusions. The study identified a situation of critical exposure that tends to be maintained as a result of misperceptions and lack of social mobilization. The dissemination of research results to teachers and residents was useful to empower subjects.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
Enhancement of interdiffusion in GaAs/AlGaAs quantum wells due to anodic oxides was studied. Photoluminescence, transmission electron microscopy, and quantum well modeling were used to understand the effects of intermixing on the quantum well shape. Residual water in the oxide was found to increase the intermixing, though it was not the prime cause for intermixing. Injection of defects such as group III vacancies or interstitials was considered to be a driving force for the intermixing. Different current densities used in the experimental range to create anodic oxides had little effect on the intermixing. ©1998 American Institute of Physics.
Resumo:
A copolymer of X-hydroxyethyl methacrylate (HEMA) with 2-ethoxy ethyl methacrylate (EEMA) was synthesized and the molecular mobility, free volume, and density properties examined as a function of composition. These properties were correlated with the equilibrium water uptake in order to determine which of the properties were most influential in causing high water sorption, as these materials are suitable candidates for hydrogel systems. It was found that the polar HEMA repeat unit results in a rigid, glassy sample at room temperature due to the high degree of hydrogen bonding between chains whereas high EEMA content leads to rubbery samples with subambient glass transition temperatures. The free volume properties on the molecular scale measured by positron annihilation Lifetime spectroscopy (PALS) showed that higher HEMA content led to smaller, fewer holes and a lower free volume fraction than EEMA. Therefore the high water uptake of HEEMA-containing copolymers is largely related to the high polarity of the HEMA unit compared to EEMA, despite the low content of free volume into which the water can initially diffuse. Trends in density with copolymer composition, as measured on a macroscopic level, differs to that seen by PALS and indicates that the two techniques are measuring different scales of packing. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.