959 resultados para Vought V-173 Pancake HALE CFD design
Resumo:
BOOK REVIEWS Multibody System Mechanics: Modelling, Stability, Control, and Ro- bustness, by V. A. Konoplev and A. Cheremensky, Mathematics and its Appli- cations Vol. 1, Union of Bulgarian Mathematicians, Sofia, 2001, XXII + 288 pp., $ 65.00, ISBN 954-8880-09-01
Resumo:
In the V.M. Glushov Institute of Cybernetics of National Academy of Sciences of Ukraine in collaboration with O.V. Palladin’s Institute of Biochemistry of National Academy of Sciences of Ukraine the smart portable device for express-diagnostics of acute viral infections, including bird flu, is designed. The device is based on the effect of surface plasmon resonance. The principles of device are described in the article.
Resumo:
Background: Emotional eating in children has been related to the consumption of energy-dense foods and obesity, but the development of emotional eating in young children is poorly understood. Objectives: We evaluated whether emotional eating can be induced in 5-7-y-old children in the laboratory and assessed whether parental use of overly controlling feeding practices at 3-5 y of age predicts a greater subsequent tendency for children to eat under conditions of mild stress at ages 5-7 y. Design: Forty-one parent-child dyads were recruited to participate in this longitudinal study, which involved parents and children being observed consuming a standard lunch, completing questionnaire measures of parental feeding practices, participating in a research procedure to induce child emotion (or a control procedure), and observing children's consumption of snack foods. Results: Children at ages 5-7 y who were exposed to a mild emotional stressor consumed significantly more calories from snack foods in the absence of hunger than did children in a control group. Parents who reported the use of more food as a reward and restriction of food for health reasons with their children at ages 3-5 y were more likely to have children who ate more under conditions of negative emotion at ages 5-7 y. Conclusions: Parents who overly control children's food intake may unintentionally teach children to rely on palatable foods to cope with negative emotions. Additional research is needed to evaluate the implications of these findings for children's food intake and weight outside of the laboratory setting. This trial was registered at clinicaltrials.gov as NCT01122290.
Resumo:
Software applications created on top of the service-oriented architecture (SOA) are increasingly popular but testing them remains a challenge. In this paper a framework named TASSA for testing the functional and non-functional behaviour of service-based applications is presented. The paper focuses on the concept of design time testing, the corresponding testing approach and architectural integration of the consisting TASSA tools. The individual TASSA tools with sample validation scenarios were already presented with a general view of their relation. This paper’s contribution is the structured testing approach, based on the integral use of the tools and their architectural integration. The framework is based on SOA principles and is composable depending on user requirements.
Resumo:
When machining a large-scale aerospace part, the part is normally located and clamped firmly until a set of features are machined. When the part is released, its size and shape may deform beyond the tolerance limits due to stress release. This paper presents the design of a new fixing method and flexible fixtures that would automatically respond to workpiece deformation during machining. Deformation is inspected and monitored on-line, and part location and orientation can be adjusted timely to ensure follow-up operations are carried out under low stress and with respect to the related datum defined in the design models.
Resumo:
In recent decades, a number of sustainable strategies and polices have been created to protect and preserve our water environments from the impacts of growing communities. The Australian approach, Water Sensitive Urban Design (WSUD), defined as the integration of urban planning and design with the urban water cycle management, has made considerable advances on design guidelines since 2000. WSUD stormwater management systems (e.g. wetlands, bioretentions, porous pavement etc), also known as Best Management Practices (BMPs) or Low Impact Development (LID), are slowly gaining popularity across Australia, the USA and Europe. There have also been significant improvements in how to model the performance of the WSUD technologies (e.g. MUSIC software). However, the implementation issues of these WSUD practices are mainly related to ongoing institutional capacity. Some of the key problems are associated with a limited awareness of urban planners and designers; in general, they have very little knowledge of these systems and their benefits to the urban environments. At the same time, hydrological engineers should have a better understanding of building codes and master plans. The land use regulations are equally as important as the physical site conditions for determining opportunities and constraints for implementing WSUD techniques. There is a need for procedures that can make a better linkage between urban planners and WSUD engineering practices. Thus, this paper aims to present the development of a general framework for incorporating WSUD technologies into the site planning process. The study was applied to lot-scale in the Melbourne region, Australia. Results show the potential space available for fitting WSUD elements, according to building requirements and different types of housing densities. © 2011 WIT Press.
Resumo:
Removal of dissolved salts and toxic chemicals in water, especially at a few parts per million (ppm) levels is one of the most difficult problems. There are several methods used for water purification. The choice of the method depends mainly on the level of feed water salinity, source of energy and type of contaminants present. Distillation is an age old method which can remove all types of dissolved impurities from contaminated water. In multiple effect distillation (MED) latent heat of steam is recycled several times to produce many units of distilled water with one unit of primary steam input. This is already being used in large capacity plants for treating sea water. But the challenge lies in designing a system for small scale operations that can treat a few cubic meters of water per day, especially suitable for rural communities where the available water is brackish. A small scale MED unit with an extendable number of effects has been designed and analyzed for optimum yield in terms of total distillate produced. © 2010 Elsevier B.V.
Resumo:
The conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to 4 times of the rated. A prototype of the V shape interior PMSM is also manufactured and tested to validate the numerical models built by the finite element method.
Resumo:
Changing demographics and in particular an increasingly ageing population, in combination with improved longevity, will have a major impact on changing the face of human diseases and likewise the demand for appropriate biomaterials. The ocular surface is a multifaceted system that combines to create a unique mucosal surface, which includes the cornea, conjunctiva, sclera and lids of the eye. Physical parameters such as the eyelids and eyelashes, combined with the numerous secretory glands that produce the complex tear film, act together to protect and maintain the cornea. Unfortunately an ageing tear film and lacrimal functional unit can lead to impairment of this magnificently orchestrated structure. No single mechanism or modification is responsible but, whatever the cause, the consequence is a reduction in tear stability. An uncompromised tear film is fundamental to a healthy ocular surface. In the face of progressively changing demographics and consequent requirements for medical intervention and medical device developments, it is important to understand what effects the ageing process has on these anterior ocular structures.
Resumo:
The successful design of polymers for contact lens applications depends on the ability to provide a balance of properties appropriate to the ocular environment. Principal relevant aspects of the anterior eye are the tear film, eyelid and cornea, which govern the requirements for surface properties, modulus and oxygen permeability, respectively. Permeability requirements and the developing view of the needs of the cornea, in terms of oxygen consumption and the particular roles of fluorine and silicon in the design of silicone hydrogels, which have proved to be the most successful family of materials for this demanding application, are discussed. The contact lens field is complicated by the fact that contact lenses are used in a range of wear modalities, the extremes of which can conveniently be classified as lenses that are disposed of at the end of a single period of daily wear and those used for 30. days of successive day-and-night periods, frequently referred to as extended or continuous wear. As silicone hydrogels developed, in the decade following their launch there has been a progressive trend in properties taking both modulus and water content closer to those of conventional hydrogels. This is particularly evident in the family of daily disposable contact lenses that have appeared since 2008.
Resumo:
Series Micro-Electro-Mechanical System (MEMS) switches based on superconductor are utilized to switch between two bandpass hairpin filters with bandwidths of 365 MHz and nominal center frequencies of 2.1 GHz and 2.6 GHz. This was accomplished with 4 switches actuated in pairs, one pair at a time. When one pair was actuated the first bandpass filter was coupled to the input and output ports. When the other pair was actuated the second bandpass filter was coupled to the input and output ports. The device is made of a YBa2Cu 3O7 thin film deposited on a 20 mm x 20 mm LaAlO3 substrate by pulsed laser deposition. BaTiO3 deposited by RF magnetron sputtering in utilized as the insulation layer at the switching points of contact. These results obtained assured great performance showing a switchable device at 68 V with temperature of 40 K for the 2.1 GHz filter and 75 V with temperature of 30 K for the 2.6 GHz hairpin filter. ^
Resumo:
The purpose of this thesis was to identify the optimal design parameters for a jet nozzle which obtains a local maximum shear stress while maximizing the average shear stress on the floor of a fluid filled system. This research examined how geometric parameters of a jet nozzle, such as the nozzle's angle, height, and orifice, influence the shear stress created on the bottom surface of a tank. Simulations were run using a Computational Fluid Dynamics (CFD) software package to determine shear stress values for a parameterized geometric domain including the jet nozzle. A response surface was created based on the shear stress values obtained from 112 simulated designs. A multi-objective optimization software utilized the response surface to generate designs with the best combination of parameters to achieve maximum shear stress and maximum average shear stress. The optimal configuration of parameters achieved larger shear stress values over a commercially available design.
Resumo:
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.