922 resultados para Voltage instability
Resumo:
In this paper, a novel adaptive strategy to obtain technically justified fault-ride-through requirements for wind turbines (WTs) is proposed. The main objective is to promote an effective integration of wind turbines into power systems with still low penetration levels of wind power based on technical and economical considerations. The level of requirement imposed by the strategy is increased stepwise over time, depending on system characteristics and on wind power penetration level. The idea behind is to introduce stringent requirements only when they are technically needed for a reliable and secure power system operation. Voltage stability support and fault-ride-through requirements are considered in the strategy. Simulations are based on the Chilean transmission network, a midsize isolated power system with still low penetration levels of wind power. Simulations include fixed speed induction generators and doubly fed induction generators. The effects on power system stability of the wind power injections, integrated into the network by adopting the adaptive strategy, are compared with the effects that have the same installed capacity of wind power but only considering WTs able to fulfill stringent requirements (fault-ride-through capability and support voltage stability). Based on simulations and international experience, technically justified requirements for the Chilean case are proposed.
Resumo:
This research presents the development and implementation in a computational routine of algorithms for fault location in multiterminal transmission lines. These algorithms are part of a fault-location system, which is capable of correctly identifying the fault point based on voltage and current phasor quantities, calculated by using measurements of voltage and current signals from intelligent electronic devices, located on the transmission-line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This paper also presents the development of phase component models for the power system elements used by the fault-location algorithms.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on design of digital control for wind turbines and its relation to the quality of power fed into the Brazilian grid on connecting to it a 192 MW wind farm equipped with doubly fed induction generators. PWM converters are deployed as vector controlled regulated current voltage sources for their rotors, for independent control of both active and reactive power of those generators. Both speed control and active power control strategies are analyzed, in the search for maximum efficiency of conversion of wind kinetic energy into electric power and enhanced quality of delivered power. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work presents a case study on technology assessment for power quality improvement devices. A system compatibility test protocol for power quality mitigation devices was developed in order to evaluate the functionality of three-phase voltage restoration devices. In order to validate this test protocol, the micro-DVR, a reduced power development platform for DVR (dynamic voltage restorer) devices, was tested and the results are discussed based on voltage disturbances standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new, simple approach for modeling and assessing the operation and response of the multiline voltage-source controller (VSC)-based flexible ac transmission system controllers, namely the generalized interline power-flow controller (GIPFC) and the interline power-flow controller (IPFC), is presented in this paper. The model and the analysis developed are based on the converters` power balance method which makes use of the d-q orthogonal coordinates to thereafter present a direct solution for these controllers through a quadratic equation. The main constraints and limitations that such devices present while controlling the two independent ac systems considered, will also be evaluated. In order to examine and validate the steady-state model initially proposed, a phase-shift VSC-based GIPFC was also built in the Alternate Transients Program program whose results are also included in this paper. Where applicable, a comparative evaluation between the GIPFC and the IPFC is also presented.
Resumo:
This work presents the development and implementation of an artificial neural network based algorithm for transmission lines distance protection. This algorithm was developed to be used in any transmission line regardless of its configuration or voltage level. The described ANN-based algorithm does not need any topology adaptation or ANN parameters adjustment when applied to different electrical systems. This feature makes this solution unique since all ANN-based solutions presented until now were developed for particular transmission lines, which means that those solutions cannot be implemented in commercial relays. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and planar bending is presented, electing as primary displacement variable the cross-section rotations and taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encompass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint, it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success, since very small deviations were observed with respect to results obtained via numerical integration of the exact equation of equilibrium, even when loads much higher than the critical ones were considered. Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to accommodate this sort of analysis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We assess the effect of the choice of spanwise periodic length on simulations of the flow around a fixed circular cylinder. The Reynolds number is set to 400 because, at this value, both lift coefficient and shedding frequency show significant drop due to three-dimensional flow structures. From the analysis of the three-dimensionalities of the wake and of the integral quantities such as Strouhal number, RMS of lift coefficient and energy contained in the three-dimensional portion of the flow we obtain an estimate of the minimum spanwise length to satisfactorily represent the flow. Furthermore, we observe a distinct wake behavior when the spanwise length is approximately the mode B instability wavelength. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.
Resumo:
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Welded equipment for cryogenic applications is utilized in chemical, petrochemical, and metallurgical industries. One material suitable for cryogenic application is austenitic stainless steel, which usually doesn`t present ductile/brittle transition temperature, except in the weld metal, where the presence of ferrite and micro inclusions can promote a brittle failure, either by ferrite cleavage or dimple nucleation and growth, respectively. A 25-mm- (1-in.-) thick AISI 304 stainless steel base metal was welded with the SAW process using a 308L solid wire and two kinds of fluxes and constant voltage power sources with two types of electrical outputs: direct current electrode positive and balanced square wave alternating current. The welded joints were analyzed by chemical composition, microstructure characterization, room temperature mechanical properties, and CVN impact test at -100 degrees C (-73 degrees F). Results showed that an increase of chromium and nickel content was observed in all weld beads compared to base metal. The chromium and nickel equivalents ratio for the weld beads were always higher for welding with square wave AC for the two types of fluxes than for direct current. The modification in the Cr(eq)/Ni(eq) ratio changes the delta ferrite morphology and, consequently, modifies the weld bead toughness at lower temperatures. The oxygen content can also affect the toughness in the weld bead. The highest absorbed energy in a CVN impact test was obtained for the welding condition with square wave AC electrical output and neutral flux, followed by DC(+) electrical output and neutral flux, and square wave AC electrical output and alloyed flux.