950 resultados para Volatile fatty acid (vfa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present randomized, placebo-controlled, double-blind, parallel-groups clinical trial examined the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells. Healthy adult humans (n = 160) were randomized to receive 6 g of fish oil, 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo daily for 16 weeks. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to higher eicosapentaenoic acid (EPA) composition at endpoint. Docosahexaenoic acid (DHA) composition was unchanged following treatment. The long chain LC n-3 PUFA index was only higher, compared to placebo, in the group receiving the combination of 6 g of fish oil and the multivitamin. Analysis by gender revealed that all treatments increased EPA incorporation in females while, in males, EPA was only significantly increased by the 6 g fish oil multivitamin combination. There was considerable individual variability in the red blood cell incorporation of EPA and DHA at endpoint. Gender contributed to a large proportion of this variability with females generally showing higher LC n-3 PUFA composition at endpoint. In conclusion, the incorporation of LC n-3 PUFA into red blood cells was influenced by dosage, the concurrent intake of vitamin/minerals and gender.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous efforts in the prospective evaluation of individuals who experience attenuated psychotic symptoms have attempted to isolate mechanisms underlying the onset of full-threshold psychotic illness. In contrast, there has been little research investigating specific predictors of positive outcomes. In this study, we sought to determine biological and clinical factors associated with treatment response, here indexed by functional improvement in a pre-post examination of a 12-week randomized controlled intervention in individuals at ultra-high risk (UHR) for psychosis. Participants received either long-chain omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) or placebo. To allow the determination of factors specifically relevant to each intervention, and to be able to contrast them, both treatment groups were investigated in parallel. Univariate linear regression analysis indicated that higher levels of erythrocyte membrane α-linolenic acid (ALA; the parent fatty acid of the ω-3 family) and more severe negative symptoms at baseline predicted subsequent functional improvement in the treatment group, whereas less severe positive symptoms and lower functioning at baseline were predictive in the placebo group. A multivariate machine learning analysis, known as Gaussian Process Classification (GPC), confirmed that baseline fatty acids predicted response to treatment in the ω-3 PUFA group with high levels of sensitivity, specificity and accuracy. In addition, GPC revealed that baseline fatty acids were predictive in the placebo group. In conclusion, our investigation indicates that UHR patients with higher levels of ALA may specifically benefit from ω-3 PUFA supplementation. In addition, multivariate machine learning analysis suggests that fatty acids could potentially be used to inform prognostic evaluations and treatment decisions at the level of the individual. Notably, multiple statistical analyses were conducted in a relatively small sample, limiting the conclusions that can be drawn from what we believe to be a first-of-its-kind study. Additional studies with larger samples are therefore needed to evaluate the generalizability of these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taste is the chemical sense responsible for the detection of non-volatile chemicals in potential foods. For fat to be considered as one of the taste primaries in humans, certain criteria must be met including: class of affective stimuli; receptors specific for the class of stimuli on taste bud cells (TBC); afferent fibers from TBC to taste processing regions of the brain; perception independent of other taste qualities; and downstream physiological effects. The breakdown products of the macronutrients carbohydrates (sugars) and protein (amino acids) are responsible for activation of sweet and umami tastes respectively. Following the same logic the breakdown products of fat being fatty acids are the likely class of stimuli for fat taste. Indeed, psychophysical studies have confirmed fatty acids of varying chain length and saturation are orally detectable by humans. The most likely fatty acid receptor candidates located on TBC are CD36, G protein-coupled receptor 120. Once the receptors are activated by fatty acids a series of transduction events occurs causing the release of neurotransmitters towards afferent fibers signalling the brain. Whether fatty acids elicit any direct perception independent of other taste qualities is still open to debate with only poorly defined perceptions for fatty acids reported. Others suggest that the fatty acid taste component is at detection threshold only and any perceptions are associated with either aroma or chemesthesis. It has also been established that oral exposure to fat via sham feeding stimulates increases blood triacylglycerol concentrations in humans. Therefore, overall, with the exception of an independent perception, there is consistent emerging evidence that fat is the sixth taste primary. The implications of fatty acid taste go further into health and obesity research with the gustatory detection of fats and their contributions to energy and fat intake receiving increasing attention. There appears to be a coordinated bodily response to fatty acids throughout the alimentary canal; those who are insensitive orally are also insensitive in the gastrointestinal tract and overconsume fatty food and energy. The likely mechanism linking fatty acid taste insensitivity with overweight and obesity is development of satiety after consumption of fatty foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the effects of altered dietary n-3/n-6 LC-PUFA ratio, adaptation to diet over time, different water temperatures, and their interactions on nutrients and fatty acids digestibility in juvenile Atlantic salmon. Three experimental diets were formulated to be identical, with the only exception of the ratio of eicosapentaenoic acid (EPA, 20:5n-3) to arachidonic acid (ARA, 20:4n-6), and fed to triplicate groups of juvenile Atlantic salmon (Salmo salar) of 55. g initial body weight. Fish were reared in a fully controlled recirculating aquaculture system, fed to apparent satiety twice daily and kept at 10. °C and for an initial period of 100. days, and faeces were collected for digestibility estimation. Then, half of the fish of each experimental tank were moved to a separate system, where the water temperature was gradually increased up to 20. °C. Fish were maintained in the two systems for an additional period of 50. days, and faeces were collected for digestibility estimation from both groups of fish at the two water temperatures. This study concluded that dietary treatments and time had only minor effects, whereas environmental temperature resulted in modified digestibility values, with increased nutrient digestibility with increasing temperature. Varying EPA/ARA ratio in the diet had only minor direct effects on digestibility, with no direct effect on overall nutrients digestibility, and fundamentally only statistically significant effects in the fatty acid digestibility of EPA and ARA themselves. Because of current increasing pressure for more efficient fish oil replacement strategies, increasing interest in dietary ARA in aquafeed and increasing relevance and occurrence of sub-optimal rearing temperature in commercial aquaculture, this study can be considered to be important as it provided a series of fundamental information, which are envisaged to be useful towards addressing these constraints and possible nutritional remedial strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Dr Brown’s research identified the importance of breastfeeding duration and essential fatty acids in children. Her research found that children who were breastfed for a longer duration in infancy were significantly less likely to have a diagnosis of autism or show signs of a fatty acid deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76 % of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31 % of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76 %) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40 %) production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg−1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA-D and MUFA-D, respectively) compared to a control diet (CTRL-D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA-D) and mostly refined palm oil (dietary SFA-D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta-oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta-oxidized. Together, the in vivo whole-body mass balance of fatty acids showed that n-3 long-chain polyunsaturated fatty acids (LC-PUFA) were most efficiently utilized in the SFA-D- and MUFA-D-fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC-PUFA from an oxidative fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of Omega-3 fatty acids for human health are rapidly expanding, which necessitates exploring alternative sources to fish. Many marine microorganisms across different kingdoms exhibit the ability to store a significant oil content, however are difficult to cultivate. Out of all marine microbes, thraustochytrids are considered a good source for the production of high value compounds such as polyunsaturated fatty acids (PUFAs). Optimization of culture conditions will be helpful in further enhancing cellular lipid content to suit fatty acid synthesis. This chapter describes some recent advances in the development of marine microbes for fatty acid production with a special emphasis upon thraustochytrids for biotechnological applications, focussing particularly on methods to enhanced docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.