964 resultados para Virus de RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aims to examine the possible impact of Tobacco Streak Virus (TSV) on the Australian cotton industry. TSV is transmitted by thrips, causes a disease which has had a significant impact on grain crops in Central Queensland and a preliminary study in 2007 has shown that cotton is also susceptible to field infection in this region, but many questions remain unanswered. This project aims to: • Determine the impact of TSV in “normal” seasons. • Survey New South Wales and Queensland crops and determine alternative weed and crop hosts. • Assess yield-loss in cotton due to TSV, and factors that lead to systemic infection. • Assess thrips vector species present in cotton • Provide extension material on the impact and management of TSV in cotton

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of Tobacco streak virus in sunflower and pulse crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral diseases of cotton are of economic significance in many parts of the world and several of these remain biosecurity threats to the Australian cotton industry, including Cotton Leaf Roll Virus (CLRV) from South East Asia. The proposed project will result in a greater understanding of the field symptoms of CLRV in Thailand and diagnostic assays used for its detection. I will also determine if the diagnostic assay being developed for Brazilian CLRDV as part of the CRDC project (11-12FRP00062) may also detect Thailand CLRV. It will provide educational opportunities to increase the knowledge base of staff currently working on cotton virus research and in doing so help to protect the Australian cotton industry from incursions of exotic viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiology and management of tobacco streak virus in sunflower and pulse crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2006, Tobacco streak virus (TSV) was identified as the causal agent of the devastating sunflower necrosis disease in central Queensland (CQ), and subsequently in 2007 as the cause of major losses in mungbeans in the same area. It has been a major factor in the recent downturn in the sunflower industry in CQ. Surveys in 2007/2008 as part of a one year scoping study (project 03DAQ005) found TSV in cotton in CQ. The symptoms were mostly confined to the feeding sites of the thrips and appeared as reddish spots and rings, but only occasionally the plants were systemically infected and showed a chlorotic mosaic and leaf deformation. The major objectives of this project (DAQ0002) were to determine: the incidence and distribution of TSV in cotton and its likely effect on yield; the thrips vector species associated with TSV infections in cotton; and the factors that may lead to systemic infections. In contrast to the extensive damage observed in sunflower and mungbean crops from the same region, TSV has caused no measurable damage in commercial cotton crops surveyed in CQ over the seasons 2008/9 to 2010/11. No TSV infected cotton was found in regions outside of CQ and the geographical distribution of TSV disease in cotton (and other susceptible hosts) appears to be closely related to the distribution of the major alternative host, parthenium weed. The most likely thrips species responsible for transmission of TSV into cotton is the tomato thrips (Frankliniella schultzei) and onion thrips (Thrips tabaci). Systemically infected plants are rarely seen in commercial crops and have also been rarely produced in controlled tests. It appears that systemic infection may be transient with only mild symptoms being produced intermittently. With current cultivars and conditions, it appears likely that TSV will continue to cause only minor levels of mild local lesions with no impact on yield in cotton crops. It appears that no specific control strategies are required to limit the impact of TSV in cotton. However, general farm hygiene to minimise the presence of the major alternative host of TSV, parthenium weed, is advised and may be of vital importance if TSV susceptible rotational crops such as mung beans are grown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of cattle tick (Rhipicephalus (Boophilus) microplus; Acari: Ixodidae) molecular and cellular pathways has been hampered by the lack of an annotated genome. In addition, most of the tick expressed sequence tags (ESTs) available to date consist of similar to 50% unassigned sequences without predicted functions. The most common approach to address this has been the application of RNA interference (RNAi) methods to investigate genes and their pathways. This approach has been widely adopted in tick research despite minimal knowledge of the tick RNAi pathway and double-stranded RNA (dsRNA) uptake mechanisms. A strong knockdown phenotype of adult female ticks had previously been observed using a 594 bp dsRNA targeting the cattle tick homologue for the Drosophila Ubiquitin-63E gene leading to nil or deformed eggs. A NimbleGen cattle tick custom microarray based on the BmiGI.V2 database of R. microplus ESTs was used to evaluate the expression of mRNAs harvested from ticks treated with the tick Ubiquitin-63E 594 bp dsRNA compared with controls. A total of 144 ESTs including TC6372 (Ubiquitin-63E) were down-regulated with 136 ESTs up-regulated following treatment. The results obtained substantiated the knockdown phenotype with ESTs identified as being associated with ubiquitin proteolysis as well as oogenesis, embryogenesis, fatty acid synthesis and stress responses. A bioinformatics analysis was undertaken to predict off-target effects (OTE) resulting from the in silico dicing of the 594 bp Ubiquitin-63E dsRNA which identified 10 down-regulated ESTs (including TC6372) within the list of differentially expressed probes on the microarrays. Subsequent knockdown experiments utilising 196 and 109 bp dsRNAs, and a cocktail of short hairpin RNAs (shRNA) targeting Ubiquitin-63E, demonstrated similar phenotypes for the dsRNAs but nil effect following shRNA treatment. Quantitative reverse transcriptase PCR analysis confirmed differential expression of TC6372 and selected ESTs. Our study demonstrated the minimisation of predicted OTEs in the shorter dsRNA treatments (similar to 100-200 bp) and the usefulness of microarrays to study knockdown phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruksien käyttö tuotekehityksen ja tutkimuksen vaatimien proteiinien tuottamiseen, syötävien rokotteiden kehittämiseen ja geeniterapiaan edustavat kasvavia biotekniikan sovellusalueita. Perunan A-virus (PVA) kuuluu potyviruksiin, joiden proteiinit tuotetaan aluksi yhtenä suurena molekyylinä, joka pilkotaan yksittäisiksi proteiineiksi viruksen itsensä tuottamilla entsyymeillä. Siten virusgenomiin lisätty vieras geeni käännetään proteiiniksi virusproteiinien mukana. Lopputuloksena kaikkia proteiineja tuotetaan kasvisoluissa samansuuruinen määrä. Lisäksi, viruksen proteiinikuoren koontimekanismi sallii perintöaineksen merkittävän lisäyksen ilman että viruksen tartutuskyky merkittävästi heikkenee. Koska virus monistuu ja leviää koko kasviin, jo melko pieni määrä kasveja riittää huomattavan proteiinimäärän tuottamiseen esimerkiksi säännösten mukaisessa kasvihuoneessa. Tämän työn tarkoituksena oli muuntaa PVA:n genomia siten, että virus soveltuisi yhden vieraan proteiinin tai useiden erilaisten proteiinien samanaikaiseen tuottamiseen kasveissa. Aluksi kokeiltiin viruksen replikaasia ja kuoriproteiinia koodaavien genomialueiden välistä kohtaa ja ihmisestä peräisi olevaa geeniä, joka tuotti S-COMT-entsyymiä (katekoli-O-metyylitransferaasi). Sen aktiivisuuden rajoittaminen auttaa Parkinsonintaudin hoidossa. Kasvissa tuotettua S-COMT:ia voitaisiin käyttää lääkekehityksessä estolääkkeiden testaukseen. Kahden viikon kuluttua tartutuksesta tupakan lehdissä oli entsymaattisesti aktiivista S-COMT:ia n. 1 % lehden liukoisista proteiineista. PVA:n P1-proteiinia koodaavalta alueelta oli paikannettu kohta, johon ehkä voitaisiin siirtää vieras geeni. Asia varmistettiin siirtämällä tähän kohtaan meduusan geeni, joka tuottaa UV-valossa vihreänä fluoresoivaa proteiinia (GFP). GFP-geeniä kantava PVA levisi kasvissa ja lisääntyi n. 30-50 %:iin viruksen normaalista pitoisuudesta. Koko kasvi fluoresoi vihreänä UV-valossa. Vieras geeni voidaan sijoittaa myös potyviruksen P1- ja HCpro-proteiineja koodaavien alueiden väliin. Samaan PVA-genomiin siirrettiin kolme geeniä, yksi kuhunkin kolmesta kloonauskohdasta: GFP-geeni P1:n sisälle, merivuokon lusiferaasigeeni P1/HCpro-kohtaan ja bakteerin beta-glukuronidaasigeeni (GUS) replikaasi/kuoriproteiini-kohtaan. Virusgenomin ja itse viruksen pituudet kasvoivat 38 %, mutta virus säilytti tartutuskykynsä. Se levisi kasveissa saavuttaen n. 15 % viruksen normaalista pitoisuudesta. Kaikki kolme vierasta proteiinia esiintyivät lehdissä aktiivisina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Menangle virus (MenPV) is a zoonotic paramyxovirus capable of causing disease in pigs and humans. It was first isolated in 1997 from stillborn piglets at a commercial piggery in New South Wales, Australia, where an outbreak of reproductive disease occurred. Neutralizing antibodies to MenPV were detected in various pteropid bat species in Australia and fruit bats were suspected to be the source of the virus responsible for the outbreak in pigs. However, previous attempts to isolate MenPV from various fruit bat species proved fruitless. Here, we report the isolation of MenPV from urine samples of the black flying fox, Pteropus alecto, using a combination of improved procedures and newly established bat cell lines. The nucleotide sequence of the bat isolate is 94% identical to the pig isolate. This finding provides strong evidence supporting the hypothesis that the MenPV outbreak in pigs originated from viruses in bats roosting near the piggery. © 2012 Printed in Great Britain.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro methyiation of Escherichia coli transfer ribonucleic acid by cell free extracts of Mycobacterium smegmatis leads exclusively to the formation of 1-methyl adenine [Vani, B. R., Ramakrishnan, T., Taya, Y., Noguchi, S., Yamaiuzumi, Z. and Nishimura, S.(1978) J. Bact., 137,1085]. We have studied the effect of this modification on aminoacylation of Escherichia coli tRNA by mycobacterial enzymes. Aminoacylation with total algal protein hydrolysate as well as several individual aminoacids like methionine, valine, tyrosine, aspartic acid and lysine were monitored. In all the cases methyiation had a positive effect on the extent of aminoacylation by mycobacterial enzymes. Decreased aminoacylation in vitro was observed when hypomethylated transfer RNA from ethionine treated cells was used as the substrate for aminoacylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cotton bunchy top (CBT) disease has caused significant yield losses in Australia and is now managed by control of its vector, the cotton aphid (Aphis gossypii). Its mode of transmission and similarities in symptoms to cotton Blue Disease suggested it may also be caused by a luteovirus or related virus. Degenerate primers to conserved regions of the genomes of the family Luteoviridae were used to amplify viral cDNAs from CBT-affected cotton leaf tissue that were not present in healthy plants. Partial genome sequence of a new virus (Cotton bunchy top virus, CBTV) was obtained spanning part of the RNA-dependent-RNA-polymerase (RdRP), all of the coat protein and part of the aphid-transmission protein. CBTV sequences could be detected in viruliferous aphids able to transmit CBT, but not aphids from non-symptomatic plants, indicating that it is associated with the disease and may be the causal agent. All CBTV open-reading frames had their closest similarity to viruses of the genus Polerovirus. The partial RdRP had 90 % amino acid identity to the RdRP of Cotton leafroll dwarf virus (CLRDV) that causes cotton blue disease, while other parts of the genome were more similar to other poleroviruses. The sequence similarity and genome organization of CBTV suggest that it should be considered a new member of the genus Polerovirus. This partial genome sequence of CBTV opens up the possibility for developing diagnostic tests for detection of the virus in cotton plants, aphids and weeds as well as alternative strategies for engineering CBT resistance in cotton plants through biotechnology. © 2012 Australasian Plant Pathology Society Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com