922 resultados para Vesicle, Polymersome, Loading
Resumo:
The life cycle of Pygidiopsis crassus n. sp. was experimentally reproduced, starting from cercariae from naturally infected Littoridina parchappei collected from Lujan River and different ponds in Buenos Aires Province, Argentina. Metacercariae were found encysted in the body cavity of experimentally and naturally infected fishes Cnesterodon decemmaculatus and naturally infected Jenynsia lineata. Adults were obtained experimentally in chicks and mice. The natural host is unknown. The new species is compared with Pygidiopsis macrostomum Travassos 1928, from Rattus norvegicus and from Noctilio leporinus mastivus, differing in body and egg sizes, in the size relation of oral and ventral sucker and the shape of excretory vesicle.
Resumo:
Excess fructose intake causes hypertriglyceridemia and hepatic insulin resistance in sedentary humans. Since exercise improves insulin sensitivity in insulin-resistant patients, we hypothesized that it would also prevent fructose-induced hypertriglyceridemia. This study was therefore designed to evaluate the effects of exercise on circulating lipids in healthy subjects fed a weight-maintenance, high-fructose diet. Eight healthy males were studied on three occasions after 4 days of 1) a diet low in fructose and no exercise (C), 2) a diet with 30% fructose and no exercise (HFr), or 3) a diet with 30% fructose and moderate aerobic exercise (HFrEx). On all three occasions, a 9-h oral [(13)C]-labeled fructose loading test was performed on the fifth day to measure [(13)C]palmitate in triglyceride-rich lipoprotein (TRL)-triglycerides (TG). Compared with C, HFr significantly increased fasting glucose, total TG, TRL-TG concentrations, and apolipoprotein (apo)B48 concentrations as well as postfructose glucose, total TG, TRL-TG, and [(13)C]palmitate in TRL-TG. HFrEx completely normalized fasting and postfructose TG, TRL-TG, and [(13)C]palmitate concentration in TRL-TG and apoB48 concentrations. In addition, it increased lipid oxidation and plasma nonesterified fatty acid concentrations compared with HFr. These data indicate that exercise prevents the dyslipidemia induced by high fructose intake independently of energy balance.
Resumo:
The four dominant outer membrane proteins (46, 38, 33 and 28 kDa) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7) strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids) for the 38 kDa (class 3) protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4) was unique and not homologous to any known protein.
Resumo:
BACKGROUND: Clinical small-caliber vascular prostheses are unsatisfactory. Reasons for failure are early thrombosis and late intimal hyperplasia. We thus prepared biodegradable small-caliber vascular prostheses using electrospun polycaprolactone (PCL) with slow-releasing paclitaxel (PTX), an antiproliferative drug. METHODS AND RESULTS: PCL solutions containing PTX were used to prepare nonwoven nanofibre-based 2-mm ID prostheses. Mechanical morphological properties and drug loading, distribution, and release were studied in vitro. Infrarenal abdominal aortic replacement was carried out with nondrug-loaded and drug-loaded prostheses in 18 rats and followed for 6 months. Patency, stenosis, tissue reaction, and drug effect on endothelialization, vascular remodeling, and neointima formation were studied in vivo. In vitro prostheses showed controlled morphology mimicking extracellular matrix with mechanical properties similar to those of native vessels. PTX-loaded grafts with suitable mechanical properties and controlled drug-release were obtained by factorial design. In vivo, both groups showed 100% patency, no stenosis, and no aneurysmal dilatation. Endothelial coverage and cell ingrowth were significantly reduced at 3 weeks and delayed at 12 and 24 weeks in PTX grafts, but as envisioned, neointima formation was significantly reduced in these grafts at 12 weeks and delayed at 6 months. CONCLUSIONS: Biodegradable, electrospun, nanofibre, polycaprolactone prostheses are promising because in vitro they maintain their mechanical properties (regardless of PTX loading), and in vivo show good patency, reendothelialize, and remodel with autologous cells. PTX loading delays endothelialization and cellular ingrowth. Conversely, it reduces neointima formation until the end point of our study and thus may be an interesting option for small caliber vascular grafts.
Resumo:
How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.
Resumo:
In-shoe loading patterns were examined in each foot (back and front) separately during two types of tennis serve [first (or flat) and second (or twist) serve] and two service stance styles [foot-up (back foot is moved forward next to front foot for push-off) and foot-back (feet remain at the same relative level)]. Ten competitive tennis players completed five trials for each type of serve and service stance style in random order. Plantar pressure distribution was recorded using Pedar insoles divided into nine areas for analysis. Mean and peak pressures (+15.2%, P < 0.01 and +12.8%, P < 0.05) as well as maximal forces (+20.2%, P < 0.01) were higher under the lateral forefoot of the front foot in first than in second serves, while mean forces were higher (+17.2%, P < 0.05) under the lesser toes. Relative load was higher on the lateral forefoot (+20.4%, P < 0.05) but lower (-32.5%, P < 0.05) on the medial heel of the front foot with foot-up compared with foot-back stance. Using a foot-up stance, loading of the back foot was higher (+31.8%, P < 0.01) under the lateral mid-foot but lower (-29.9%, P < 0.01) under the medial forefoot. The type of serve and the stance style adopted have a significant effect on foot loading. Such findings might help improve mechanical efficiency of the serve.
Resumo:
The reported prevalence of late-life depressive symptoms varies widely between studies, a finding that might be attributed to cultural as well as methodological factors. The EURO-D scale was developed to allow valid comparison of prevalence and risk associations between European countries. This study used Confirmatory Factor Analysis (CFA) and Rasch models to assess whether the goal of measurement invariance had been achieved; using EURO-D scale data collected in 10 European countries as part of the Survey of Health, Ageing and Retirement in Europe (SHARE) (n = 22,777). The results suggested a two-factor solution (Affective Suffering and Motivation) after Principal Component Analysis (PCA) in 9 of the 10 countries. With CFA, in all countries, the two-factor solution had better overall goodness-of-fit than the one-factor solution. However, only the Affective Suffering subscale was equivalent across countries, while the Motivation subscale was not. The Rasch model indicated that the EURO-D was a hierarchical scale. While the calibration pattern was similar across countries, between countries agreement in item calibrations was stronger for the items loading on the affective suffering than the motivation factor. In conclusion, there is evidence to support the EURO-D as either a uni-dimensional or bi-dimensional scale measure of depressive symptoms in late-life across European countries. The Affective Suffering sub-component had more robust cross-cultural validity than the Motivation sub-component.
Resumo:
Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.
Resumo:
How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division.
Resumo:
This study describes spermatogenesis in a majid crab (Maja brachydactyla) using electron microscopy and reports the origin of the different organelles present in the spermatozoa. Spermatogenesis in M. brachydactyla follows the general pattern observed in other brachyuran species but with several peculiarities. Annulate lamellae have been reported in brachyuran spermatogenesis during the diplotene stage of first spermatocytes, the early and mid-spermatids. Unlike previous observations, a Golgi complex has been found in midspermatids and is involved in the development of the acrosome. The Golgi complex produces two types of vesicles: light vesicles and electron-dense vesicles. The light vesicles merge into the cytoplasm, giving rise to the proacrosomal vesicle. The electron-dense vesicles are implicated in the formation of an electron-dense granule, which later merges with the proacrosomal vesicle. In the late spermatid, the endoplasmic reticulum and the Golgi complex degenerate and form the structures–organelles complex found in the spermatozoa. At the end of spermatogenesis, the materials in the proacrosomal vesicle aggregate in a two-step process, forming the characteristic concentric three-layered structure of the spermatozoon acrosome. The newly formed spermatozoa from testis show the typical brachyuran morphology.
Resumo:
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus.
Resumo:
Cataract surgery is often performed in patients suffering from associated pathologies. Our goal is to develop a biodegradable drug delivery system (DDS) combined with the artificial intraocular lens (IOL). DDS were manufactured using poly(D,L-lactide-co-glycolide), or PLGA, and were loaded with triamcinolone acetonide (TA). The loading capacity was approximately 1050 microg of TA per DDS. The higher the molecular weight of PLGA (34,000, 48,000 and 80,000Da), the slower was the release of TA in vitro. Cataract surgery was performed on the right eye of rabbits. IOL was inserted with (i) no DDS, (ii) unloaded DDS PLGA48000, (iii) one loaded DDS PLGA48000, (iv) two loaded DDS. The number of inflammatory cells and the protein concentration were measured in the aqueous humor (AH). Unloaded DDS showed good ocular biocompatibility. One DDS PLGA48000 loaded with TA significantly reduced postoperative ocular inflammation. Two loaded DDS PLGA48000 was even more effective in inhibiting such inflammation. On long-term observation (days 63 and 84), reduction of inflammation could be obtained by insertion of one DDS PLGA48000 and a second DDS PLGA80000. Therefore, our "all in one" system is very promising since it could replace oral treatment and reduce the number of intraocular injections
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
A new genus, Oswaldotrema gen. nov. is proposed. Oswaldotrema nacinovici sp. nov. is descibed from Numenius phaeopus Latham, 1790. Differentiation from the other related genera, namely Philophthalmus, Pygorchis, Proctobium, Parorchis, Echinostephila, Cloacitrema, Pittacium, Ophthalmotrema, Skrjabinovermis and Paratrema, was based on morphological characters, mainly on those referring to the body surface, body shape, head, esophagus, pharynx, acetabulum, vitellaria, vitelline reservoir and seminal vesicle.
Resumo:
Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidiosis (Merifluor®, Meridian Diagnostic Inc.) could be found associated with vesicles in the space between the sporozoites and the oocysts wall, and incorporated to the outer oocyst wall by an unknown mechanism.