963 resultados para Vertebrate Paleontology
Resumo:
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.
Resumo:
Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish but little is known about the relationship between its gene structure and nuclear 'ion of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. ouratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poty I:C, or CAB INF-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NILS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS Locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids (''(KDKSINK101)-K-95" and ''(75)KTWKANFR(82)"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K-75, K-78, R-82, K-95, and K-101) and one non-conserved basic amino acid (K-97) are present in this NLS from CaIRF-1. This observation suggests that K97 Of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic aminoacids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Myelin basic protein (MBP), as a major component of the myelin sheath, has been revealed to play an important role informing and maintaining myelin structure in vertebrate nervous system. In teleost, hypothalamus is an instinctive brain center and plays significant roles in many physiological functions, such as energy metabolism, growth, reproduction, and stress response. In comparison with other MBP identified in vertebrates, a smallest MBP is cloned and identified from the orange-spotted grouper hypothalamic cDNA plasmid library in this study. RT-PCR analysis and Western blot detection indicate that the EcMBP is specific to hypothalamus, and expresses mainly in the tuberal hypothalamus in adult grouper. Immunofluorescence localization suggests that EcMBP should be expressed by oligodendrocytes, and the expressing cells should be concentrated in hypothalamus and the area surrounding hypothalamus, such as NPOpc, VC, DP, NLTm, and NDLI The studies on EcMBP expression pattern and developmental behaviour in the brains of grouper embryos and larvae reveal that the EcMBP-expressing cells are only limited in a defined set of cells on the border of hypothalamus, and suggest that the EcMBP-expressing cells might be a subpopulation of oliaodendrocyte progenitor cells. This study not only identifies a smallest MBP isoform specific to hypothalamus that can be used as a molecular marker of oligodendrocytes in fish, but also provides new insights for MBP evolution and cellular distribution. (C) 2007 Elsevier B.V.. All rights reserved.
Resumo:
The Yangtze River dolphin or baiji ( Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multivessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise ( Neophocaena phocaenoides asiaeorientalis).
Resumo:
A tetraploidization event took place in the cyprinid lineage leading to goldfishes about 15 million years ago. A PCR survey for Hox genes in the goldfish Carassius auratus auratus (Actinopterygii: Cyprinidae) was performed to assess the consequences of this genome duplication. Not surprisingly, the genomic organization of the Hox gene clusters of goldfish is similar to that of the closely related zebrafish (Danio rerio). However, the goldfish exhibits a much larger number of recent pseudogenes, which are characterized by indels. These findings are consistent with the hypothesis that dosage effects cause selection pressure to rapidly silence crucial developmental regulators after a tetraploidization event.
Resumo:
Sonic hedgehog (Shh), one of important homologous members of the hedgehog (Hh) family in vertebrates, encodes a signaling molecule that is involved in short- or long-range patterning processes during embryogenesis. In zebrafish, maternal activity of Hh was found to be contributing to the formation of primary motoneurons. However, we found that all of the known Hh members were not maternally expressed in zebrafish. In the present study, full-length cDNA of common carp (Cyprinus carpio) Shh (cShh) was gained by degenerate reverse-transcription PCR (RT-PCR) and rapid amplification of cDNA ends. Sequence comparison shows that cShh coding sequence shares 93.4% identity with zebrafish Shh coding sequence, and their corresponding protein sequences have 91.9% similarity. Comparative analysis of Shh genomic sequences and Hh protein sequences from different species revealed that the genomic structures of Hh are conserved from invertebrate to vertebrate. In contrast to zebrafish Shh, cShh transcripts were detectable from one-cell stage by RT-PCR analysis. Whole mount in situ hybridization verified the maternal expression of Shh in common carp, which is, to our knowledge, the first report of that in vertebrates, suggesting that Shh might be responsible for the maternal Hh activity in common carp.
Resumo:
dUTPase (DUT) is a ubiquitous and important enzyme responsible for regulating levels of dUTP. Here, an iridovirus DUT was identified and characterized from Rana grylio virus (RGV) which is a pathogen agent in pig frog. The DUT encodes a protein of 164aa with a predicted molecular mass of 17.4 kDa, and its transcriptional initiation site was determined by 5'RACE to start from the nucleotide A at 15 nt upstream of the initiation codon ATG. Sequence comparisons and multiple alignments suggested that RGV DUT was quite similar to other identified DUTs that function as homotrimers. Phylogenetic analysis implied that DUT horizontal transfers might have occurred between the vertebrate hosts and iridoviruses. Furthermore, its temporal expression pattern during RGV infection course was characterized by RT-PCR and Western blot analysis. It begins to transcribe and translate as early as 4 h postinfection (p.i.), and remains detectable at 48 h p.i. DUT-EGFP fusion protein was observed in the cytoplasm of pEGFP-N3-Dut transfected EPC cells. Immunofluorescence also confirmed DUT cytoplasm localization in RGV-infected cells. Using drug inhibition analysis by a de novo protein synthesis inhibitor (cycloheximide) and a viral DNA replication inhibitor (cytosine arabinofuranoside), RGV DUT was classified as an early (E) viral gene during the in vitro infection. Moreover, RGV DUT overexpression was shown that there was no effect on RGV replication by viral replication kinetics assay. (c) 2006 Published by Elsevier B.V.
Resumo:
Virus infection of mammalian cells activates an innate antiviral immune response characterized by production of interferon (IFN) and the subsequent transcriptional upregulation of IFN-stimulated genes (ISGs) by the JAK-STAT signaling pathway. Here, we report that a fish cell line, crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells, can produce IFN activity and then form an antiviral state after infection with UV-inactivated grass carp hemorrhagic virus (GCHV), a double-stranded (ds) RNA virus. From UV-inactivated GCHV-infected CAB cells, 15 pivotal genes were cloned and sequenced, and all of them were shown to be involved in IFN antiviral innate immune response. These IFN system genes include the dsRNA signal sensing factor TLR3, IFN, IFN signal transduction factor STAT1, IFN regulatory factor IRF7, putative IFN antiviral effectors Mx1, Mx2, PKR-like, Viperin, IFI56, and other IFN stimulated genes (ISGs) IFI58, ISG15-1, ISG15-2, USP18, Gig1 and Gig2. The identified fish IFN system genes were highly induced by active GCHV, UV-inactivated GCHV, CAB IFN or poly(I).poly(C), and showed similar expression patterns to mammals. The data indicate that an IFN antiviral innate immune response similar to that in mammals exists in the UV-inactivated GCHV-infected CAB cells, and the IFN response contributes to the formation of an antiviral state probably through JAK-STAT signaling pathway. This study provides strong evidence for existence of IFN antiviral innate immune response in fish, and will assist in elucidating the origin and evolution of vertebrate IFN system. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.
Resumo:
Potential roles of Clq/tumor necrosis factor (TNF) superfamily proteins have been observed in vertebrate oogenesis and oocyte maturation, but no ovary-specific member has been identified so far. In this study, we have cloned and identified a novel member of Clq family with a Clq domain in the C-terminal from fully grown oocyte cDNA library of color crucian carp and demonstrated that the gene might be specifically expressed in ovary and therefore designated as Carassius auratus ovary-specific Clq-like factor, CaOClq-like factor. It encodes a 213 amino acid protein with a 17 amino acid signal peptide. There is only one protein band of about 24.5 kDa in the extracts from phase I to phase IV oocytes, but two positive protein bands are detected in the extracts of mature eggs and fertilized eggs. Furthermore, the mobility shift of the smaller target protein band cannot be eliminated by phosphatase treatment, but the larger protein band increases its mobility on the gel after phosphatase treatment, suggesting that the larger protein might be a phosphorylated form. Immunofluorescence localization indicates that the CaOClq-like proteins localize in cytoplasm, cytoplasm membrane and egg envelope of the oocytes at cortical granule stage and vitellogenesis stage, whereas they were compressed to cytoplasm margin in ovulated mature eggs and discharged into perivitelline space between cytoplasm membrane and egg envelope after egg fertilization. Further studies on distribution and translocation mechanism of the CaOClq-like factor will be benefit to elucidate the unique function in oogenesis, oocyte maturation and egg fertilization. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Immunoglobulin light chain cDNA sequences of a perciform fish, the mandarin fish Siniperca chuatsi were amplified from head kidney mRNA by reverse transcription (RT)-PCR and RACE methods using degenerated primer and gene specific ones. In cDNA sequences of the VL region, nucleotide exchanges were present mainly within CDRs, although a lesser degree of variability was also found in FRs. Moreover, the length of CDRI and CDR3 in the mandarin fish is shorter than in most other fish species. In the middle of S. chuatsi CL region, a microsatellite sequence (AGC)(6-8) was found, which is also present in another perciform species, the spotted wolffish (Anarhichas minor). The comparison of amino acid sequence of the mandarin fish CL domain with those of other vertebrates showed the highest degree of similarity of 94.5% to the spotted wolffish, while the similarity with rainbow trout (Oncorhynchus mykiss) Ig L1 (62.7%) and channel catfish (Ictalurus punctatus) Ig LG (55.9%) isotypes is also higher. However, there is only 50% identity in the VL regions between the mandarin fish and the wolffish. The sequence similarity of the mandarin fish CL domain with those of higher vertebrate did not readily allow it to be classified as kappa or lambda isotype. The phylogenetic analyses also demonstrated that the CL genes of the mandarin fish and most other teleost fish cluster as a separate branch out of the mammal kappa and lambda branches. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.
Resumo:
A new gene with WD domains is cloned and characterized according to its differential transcription and expression between previtellogenic oocytes (phase I oocytes) and fully-grown oocytes (phase V oocytes) from natural gynogenetic silver crucian carp (Carassius auratus gibelio) by using the combinative methods of suppressive subtraction hybridization, SMART cDNA synthesis and RACE-PCR. The full-length cDNA is 1870 bp. Its 5 ' untranslated region is 210 bp, followed by an open reading frame of 990 bp, which has the typical vertebrate initiator codon of ANNATG. The open reading frame encodes a protein with 329 amino acids. It has 670 bp of 3 ' untranslated region and an AATAAA polyadenylation signal. Because it has 92% homology to STRAP (serine-threonine kinase receptor-associated protein), a recently reported gene, we named it FSTRAP (fish STRAP). Virtual Northern blotting indicated that the FSTRAP was transcribed in fully-grown oocytes (phase V oocytes), but not in previtellogenic oocytes (phase I oocytes). RT-PCR analysis showed that FSTRAP was transcribed in brain, heart, kidney, muscle, ovary, spleen and testis, but not in liver. And its mRNA could be detected in the oocytes from phase II to phase V. Western blotting also showed that FSTRAP protein could be detected in brain, heart, kidney, muscle, ovary, spleen and testis except liver. Results of Western blotting on various oocytes were also similar to the RT-PCR data. FSTRAP protein was not expressed in the previtellogenic oocytes. Its expression initiated from phase II oocytes after vitellogenesis, and was consistent with the mRNA transcription.
Resumo:
Identifcation of the earliest forebrain-specific markers should facilitate the elucidation of molecular events underlying vertebrate forebrain determination and specification. Here we report the sequence and characterization of fez (forebrain embryonic zinc finger), a gene that is specifically expressed in the embryonic forebrain of zebrafish. Fez encodes a putative nuclear zinc finger protein that is highly conserved in Drosophila, zebrafish, Xenopus, mouse, and human. In zebrafish, the expression of fez becomes detectable at the anterior edge of the presumptive neuroectoderm by 70% epiboly. During the segmentation period, its expression is completely restricted to the rostral region of the prospective forebrain. At approximately 24 h postfertilization, fez expression is mostly confined to the telencephalon and the anterior-ventral region of the diencephalon. Although fez expression is present in one-eyed pinhead (oep) and cyclops (cyc) zebrfish mutants, the pattern is altered. Forced expression of fez induces ectopic expression of dlx2 and dlx6, two genes involved in brain development. Knockdown of fez function using a morpholino-based antisense oligo inhibited dlx2 expression in the ventral forebrain. Our studies indicate that fez is one of the earliest markers specific for the anterior neuroectoderm and it may play a role in forebrain development by regulating Dlx gene expression. (C) 2001 Academic Press.