970 resultados para Variability of the pulse wave
Resumo:
The weed, known commonly as vassourinha de botao (buttonweed), is present in several crops in northern and north-eastern Brazil. Its occurrence is common in sugarcane and soybean crops in the states of Goias, Tocantins, and Maranhao. However, there is no published information in the literature about its taxonomic classification. Thus, this research aimed to classify taxonomically this species in order to develop a classification key based on the morphological characteristics among varieties of Borreria densiflora DC., as well as to illustrate it and provide a palynological basis to classify this species as a new variety For the classification process, data from the literature, morphological characteristics, and palynological evidence were considered. In this article, we describe a new variety, B. densiflora DC. var. latifolia E.L. Cabral & Martins. The new variety possesses a terrestrial habitat and it is a simple perennial weed species. These results show the importance of an accurate identification, as well as an understanding of the evolutionary changes inherent to weeds (like intraspecific variability), breeding system, genetic potential, and ecological studies. Those factors are essential to the beginning of a long-term weed management strategy.
Resumo:
The polymetallic [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru( bpy)(2)Cl](PF(6))(2) complex (bpy = 2,2`-bipyridine, BPE = trans- 1,2-bis(4-pyridil) ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru(3)O] moiety with a [ Ru( bpy) 2( BPE) Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru(3)O(CH(3)COO)(6)(py)(2)(BPE)Ru(bpy)(2)Cl] (2+) doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)(2)(BPE)] charge-transfer bands and to the [Ru(3)O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at - 1.07 V, 0.13 V, 1.17 V, 2.91 V and - 1.29 V (vs SHE) assigned to the [Ru(3)O](-1/0/+ 1/+ 2/+3) and to the bpy (0/-1) redox processes; also a wave is observed at 0.96 V, assigned to the Ru (+2/+ 3) pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the pi-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.
Resumo:
This experiment investigated whether the stability of rhythmic unimanual movements is primarily a function of perceptual/spatial orientation or neuro-mechanical in nature. Eight participants performed rhythmic flexion and extension movements of the left wrist for 30 s at a frequency of 2.25 Hz paced by an auditory metronome. Each participant performed 8 flex-on-the-beat trials and 8 extend-on-the-beat trials in one of two load conditions, loaded and unload. In the loaded condition, a servo-controlled torque motor was used to apply a small viscous load that resisted the flexion phase of the movement only. Both the amplitude and frequency of the movement generated in the loaded and unloaded conditions were statistically equivalent. However, in the loaded condition movements in which participants were required to flex-on-the-beat became less stable (more variable) while extend-on-the-beat movements remained unchanged compared with the unload condition. The small alteration in required muscle force was sufficient to result in reliable changes in movement stability even a situation where the movement kinematics were identical. These findings support the notion that muscular constraints, independent of spatial dependencies, can be sufficiently strong to reliably influence coordination in a simple unimanual task.
Resumo:
We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Resumo:
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.
Resumo:
Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.
Resumo:
The purpose of the present study was to examine, in highly trained cyclists, the reproducibility of cycling time to exhaustion (T-max) at the power output equal to that attained at peak oxygen uptake ((V) over dot O(2)peak) during a progressive exercise test. Forty-three highly trained male cyclists (M +/- SD; age = 25 +/- 6yrs; weight = 75 +/- 7 kg; (V) over dot(2)peak = 64.8 +/- 5.2 ml.kg(-1) . min(-1)) performed two T-max tests one week apart. While the two measures of T-max were strongly related (r = 0.884; p < 0.001), T-max from the second test (245 +/- 57 s) was significantly higher than that of the first (237 +/- 57 s; p = 0.047; two-tailed). Within-subject variability in the present study was calculated to be 6 +/- 6%, which was lower than that previously reported for Tmax in sub-elite runners (25%). The mean T-max was significantly (p < 0.05) related to both the second ventilatory turnpoint (VT2; r = 0.38) and to (V) over dot O(2)peak (r = 0.34). Despite a relatively low within-subject coefficient of variation, these data demonstrate that the second score in a series of two T-max tests may be significantly greater than the first. Moreover the present data show that T-max in highly trained cyclists is moderately related to VT2 and (V) over dot O(2)peak.
Resumo:
Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
We aimed to study patterns of variation and factors influencing the evolutionary dynamics of a satellite DNA, pBuM, in all seven Drosophila species from the buzzatii cluster (repleta group). We analyzed 117 alpha pBuM-1 (monomer length 190 bp) and 119 composite alpha/beta (370 bp) pBuM-2 repeats and determined the chromosome location and long-range organization on DNA fibers of major sequence variants. Such combined methodologies in the study of satDNAs have been used in very few organisms. In most species, concerted evolution is linked to high copy number of pBuM repeats. Species presenting low-abundance and scattered distributed pBuM repeats did not undergo concerted evolution and maintained part of the ancestral inter-repeat variability. The alpha and alpha/beta repeats colocalized in heterochromatic regions and were distributed on multiple chromosomes, with notable differences between species. High-resolution FISH revealed array sizes of a few kilobases to over 0.7 Mb and mutual arrangements of alpha and alpha/beta repeats along the same DNA fibers, but with considerable changes in the amount of each variant across species. From sequence, chromosomal and phylogenetic data, we could infer that homogenization and amplification events involved both new and ancestral pBuM variants. Altogether, the data on the structure and organization of the pBuM satDNA give insights into genome evolution including mechanisms that contribute to concerted evolution and diversification.
Resumo:
Pagurus exilis (Benedict, 1892) is an endemic South Atlantic hermit crab with a distribution ranging from Rio de Janeiro State, Brazil, to Buenos Aires Province, Argentina. The present study analyzed the reproduction of two populations at the extremes of this geographical distribution, and compared their reproductive period, fecundity, and changes in egg size and egg volume during the incubation period in order to assess the variability over this latitudinal range. Hermit crabs were collected monthly over a 2-year period. In total, 108 females were analyzed for Brazil (44 non-ovigerous and 64 ovigerous), and 141 for Argentina (87 non-ovigerous and 54 ovigerous). Reproduction in Brazil occurs year-round, with peaks in the fall and winter seasons; in Argentina reproduction occurs only in spring and summer. The Brazilian ovigerous females were significantly larger than the Argentina ones (Brazil: SL = 5.33 +/- 1.45 mm; Argentina: SL = 4.15 +/- 0.52 mm; P < 0.001). The fecundity was 1447 +/- 831 eggs (317 to 2885) in Brazil and 987 +/- 711 eggs (114 to 2665) in Argentina, with a trend towards higher fecundity in Brazil. Eggs in the Argentina population were larger than those in Brazil for all the three stages investigated, and no changes in egg volume were found during egg development for both populations. The reproductive traits of the two populations showed some important differences, which may reflect adaptations to local environmental conditions, demonstrating a high plasticity of reproductive features of the species in Brazilian and Argentine waters. The strategy adopted by the Argentina population involves a lower production of larger eggs compared to the population in Brazil; this lower production is associated with reproduction in cold-water regions.
Resumo:
The aim of this study was to summarize the available data on larval morphology of the first zoea of the family Hippolytidae and describe the first zoeal stage of H. obliquimanus from two geographically distinct populations, Brazilian and Caribbean in order to discuss inter- and intraspecific variability. Ovigerous females of Hippolyte obliquimanus were collected at Cahuita (Limon, Costa Rica) and at Ubatuba (Sao Paulo, Brazil). We compiled the published descriptions of all available hippolytid Zoea I (66 spp., 21%), and all zoeae share several characteristics. However, such morphological features cannot be used to distinguish the first zoeae of Hippolytidae from other caridean larvae. Historically, the presence of an exopodal seta at the maxillule and the absence of the anal spine/papilla have been considered as characteristic for the Zoea I of the genus Hippolyte. The results of our revision, however, did not support these conclusions: although H. obliquimanus showed an exopodal seta at the maxillule, four congeners did not bear such structure; moreover, H. obliquimanus as well as one other congener have an anal spine/papilla. All morphological characters observed in the first zoeal stage of H. obliquimanus are shared with others species of the family Hippolytidae. Intraspecific variability in Hippolyte obliquimanus was detected in one morphological aspect: the first zoea had four denticles on the ventral margin of the carapace in the Brazilian population, while specimens from the Costa Rican population had three.