954 resultados para VOLCÁN POÁS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate a possible magnetic moment generation for massive neutral particles with spins-1 and -2 coupled non-minimally, in a specific way, to an external electromagnetic field. It is found that, in the nonrelativistic limit, these particles present g = 1. This result, worked out in the framework of Relativistic Quantum Mechanics, seems to suggest that g = 1 for all massive and neutral particles of any spin ≤ 2. We also compare with the results obtained for massive charged particles of spins-1 and -2, in the same regime (nonrelativistic), in order to investigate the role played by the spin separetely from the charge. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present the torsion influence in a braneworld scenario, developing the bulk metric Taylor expansion around the brane. This generalization is presented in order to better probe braneworld properties in a Riemann-Cartan framework, and it is also shown how the factors involving contorsion change the effective Einstein equation on the brane, the effective cosmological constant, and their consequence in a Taylor expansion of the bulk metric around the brane. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive an one-parameter family of consistency conditions to braneworlds in the Brans-Dicke gravity. The General Relativity case is recovered by taking a correct limit of the Brans-Dicke parameter. We show that it is possible to build a multiple AdS brane scenario in a six-dimensional bulk only if the brane tensions are negative. Besides, in the five-dimensional case, it is showed that no fine tuning is necessary between the bulk cosmological constant and the brane tensions, in contrast to the Randall-Sundrum model. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we discuss the Hamilton-Jacobi formalism for fields on the null-plane. The Real Scalar Field in (1+1) - dimensions is studied since in it lays crucial points that are presented in more structured fields as the Electromagnetic case. The Hamilton-Jacobi formalism leads to the equations of motion for these systems after computing their respective Generalized Brackets. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A few properties of the nonminimal vector interaction in the Duffin-Kemmer-Petiau theory in the scalar sector are revised. In particular, it is shown that the nonminimal vector interaction has been erroneously applied to the description of elastic meson-nucleus scatterings and that the space component of the nonminimal vector interaction plays a peremptory role for the confinement of bosons whereas its time component contributes to the leakage. Scattering in a square step potential is used to show that Klein's paradox does not manifest in the case of a nonminimal vector coupling. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the null-plane canonical structure of Podolsky's electromagnetic theory. As a theory that contains higher order derivatives in the Lagrangian function, it was necessary to redefine the canonical momenta related to the field variables. We were able to find a set of first and second-class constraints, and also to derive the field equations of the system. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations (SDE), as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared (IR) finite. We discuss how this non-perturbative information can be introduced into the QCD perturbative expansion in a consistent scheme, showing some examples of tree level hadronic reactions that successfully fit the experimental data with the gluon propagator and coupling constant depending on a dynamically generated gluon mass. This infrared mass scale acts as a natural cutoff and eliminates some of the ad hoc parameters usually found in perturbative QCD calculations. The application of these IR finite Green's functions in the case of higher order terms of the perturbative expansion is commented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].