979 resultados para VARICOSE-VEINS
Resumo:
Hydrogen peroxide (H2O2) generated in response to wounding can be detected at wound sites and in distal leaf veins within 1 hr after wounding. The response is systemic and maximizes at about 4–6 hr in both wounded and unwounded leaves, and then declines. The timing of the response corresponds with an increase in wound-inducible polygalacturonase (PG) mRNA and enzyme activity previously reported, suggesting that oligogalacturonic acid (OGA) fragments produced by PG are triggering the H2O2 response. Systemin, OGA, chitosan, and methyl jasmonate (MJ) all induce the accumulation of H2O2 in leaves. Tomato plants transformed with an antisense prosystemin gene produce neither PG activity or H2O2 in leaves in response to wounding, implicating systemin as a primary wound signal. The antisense plants do produce both PG activity and H2O2 when supplied with systemin, OGA, chitosan, or MJ. A mutant tomato line compromised in the octadecanoid pathway does not exhibit PG activity or H2O2 in response to wounding, systemin, OGA, or chitosan, but does respond to MJ, indicating that the generation of H2O2 requires a functional octadecanoid signaling pathway. Among 18 plant species from six families that were assayed for wound-inducible PG activity and H2O2 generation, 14 species exhibited both wound-inducible PG activity and the generation of H2O2. Four species, all from the Fabaceae family, exhibited little or no wound-inducible PG activity and did not generate H2O2. The time course of wound-inducible PG activity and H2O2 in Arabidopsis thaliana leaves was similar to that found in tomato. The cumulative data suggest that systemic wound signals that induce PG activity and H2O2 are widespread in the plant kingdom and that the response may be associated with the defense of plants against both herbivores and pathogens.
Resumo:
α-Fetoprotein (AFP) transcription is activated early in hepatogenesis, but is dramatically repressed within several weeks after birth. AFP regulation is governed by multiple elements including three enhancers termed EI, EII, and EIII. All three AFP enhancers continue to be active in the adult liver, where EI and EII exhibit high levels of activity in pericentral hepatocytes with a gradual reduction in activity in a pericentral-periportal direction. In contrast to these two enhancers, EIII activity is highly restricted to a layer of cells surrounding the central veins. To test models that could account for position-dependent EIII activity in the adult liver, we have analyzed transgenes in which AFP enhancers EII and EIII were linked together. Our results indicate that the activity of EIII is dominant over that of EII, indicating that EIII is a potent negative regulatory element in all hepatocytes except those encircling the central veins. We have localized this negative activity to a 340-bp fragment. This suggests that enhancer III may be involved in postnatal AFP repression.
Resumo:
Insects in the order Plecoptera (stoneflies) use a form of two-dimensional aerodynamic locomotion called surface skimming to move across water surfaces. Because their weight is supported by water, skimmers can achieve effective aerodynamic locomotion even with small wings and weak flight muscles. These mechanical features stimulated the hypothesis that surface skimming may have been an intermediate stage in the evolution of insect flight, which has perhaps been retained in certain modern stoneflies. Here we present a phylogeny of Plecoptera based on nucleotide sequence data from the small subunit rRNA (18S) gene. By mapping locomotor behavior and wing structural data onto the phylogeny, we distinguish between the competing hypotheses that skimming is a retained ancestral trait or, alternatively, a relatively recent loss of flight. Our results show that basal stoneflies are surface skimmers, and that various forms of surface skimming are distributed widely across the plecopteran phylogeny. Stonefly wings show evolutionary trends in the number of cross veins and the thickness of the cuticle of the longitudinal veins that are consistent with elaboration and diversification of flight-related traits. These data support the hypothesis that the first stoneflies were surface skimmers, and that wing structures important for aerial flight have become elaborated and more diverse during the radiation of modern stoneflies.
Resumo:
ATP-gated P2X2 receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X2 receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X2-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X2-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X2-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X2 receptor distribution on the seconds time scale.
Resumo:
The cDNA clone ERD5 (early responsive to dehydration), isolated from 1-h-dehydrated Arabidopsis, encodes a precursor of proline (Pro) dehydrogenase (ProDH), which is a mitochondrial enzyme involved in the first step of the conversion of Pro to glutamic acid. The transcript of the erd5 (ProDH) gene was undetectable when plants were dehydrated, but large amounts of transcript accumulated when plants were subsequently rehydrated. Accumulation of the transcript was also observed in plants that had been incubated under hypoosmotic conditions in media that contained l- or d-Pro. We isolated a 1.4-kb DNA fragment of the putative promoter region of the ProDH gene. The β-glucuronidase (GUS) reporter gene driven by the 1.4-kb ProDH promoter was induced not only by rehydration but also by hypoosmolarity and l- and d-Pro at significant levels in transgenic Arabidopsis plants. The promoter of the ProDH gene directs strong GUS activity in reproductive organs such as pollen and pistils and in the seeds of the transgenic plants. GUS activity was detected in vegetative tissues such as veins of leaves and root tips when the transgenic plants were exposed to hypoosmolarity and Pro solutions. GUS activity increased during germination of the transgenic plants under hypoosmolarity. The relationship between Pro metabolism and the physiological aspects of stress response and development are discussed.
Resumo:
The structural relationships between interstitial cells of Cajal (ICC), varicose nerve fibers, and smooth muscle cells in the gastrointestinal tract have led to the suggestion that ICC may be involved in or mediate enteric neurotransmission. We characterized the distribution of ICC in the murine stomach and found two distinct classes on the basis of morphology and immunoreactivity to antibodies against c-Kit receptors. ICC with multiple processes formed a network in the myenteric plexus region from corpus to pylorus. Spindle-shaped ICC were found within the circular and longitudinal muscle layers (IC-IM) throughout the stomach. The density of these cells was greatest in the proximal stomach. IC-IM ran along nerve fibers and were closely associated with nerve terminals and adjacent smooth muscle cells. IC-IM failed to develop in mice with mutations in c-kit. Therefore, we used W/W(V) mutants to test whether IC-IM mediate neural inputs in muscles of the gastric fundus. The distribution of inhibitory nerves in the stomachs of c-kit mutants was normal, but NO-dependent inhibitory neuro-regulation was greatly reduced. Smooth muscle tissues of W/W(V) mutants relaxed in response to exogenous sodium nitroprusside, but the membrane potential effects of sodium nitroprusside were attenuated. These data suggest that IC-IM play a critical serial role in NO-dependent neurotransmission: the cellular mechanism(s) responsible for transducing NO into electrical responses may be expressed in IC-IM. Loss of these cells causes loss of electrical responsiveness and greatly reduces responses to nitrergic nerve stimulation.
Resumo:
We present evidence that the JAK-STAT signal transduction pathway regulates multiple developmental processes in Drosophila. We screened for second-site mutations that suppress the phenotype of the hyperactive hopTum-1 Jak kinase, and recovered a mutation that meiotically maps to the known chromosomal position of D-Stat, a Drosophila stat gene. This hypomorphic mutation, termed statHJ contains a nucleotide substitution in the first D-Stat intron, resulting in a reduction in the number of correctly processed transcripts. Further, the abnormally processed mRNA encodes a truncated protein that has a dominant negative effect on transcriptional activation by the wild-type cDNA in cell culture. statHJ mutants exhibit patterning defects that include the formation of ectopic wing veins, similar to those seen in mutants of the epidermal growth factor/receptor pathway. Abnormalities in embryonic and adult segmentation and in tracheal development were also observed. The hopTum-1 and statHJ mutations can partially compensate for each other genetically, and Hop overexpression can increase D-Stat transcriptional activity in vitro, indicating that the gene products interact in a common regulatory pathway.
Resumo:
Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.
Seed and vascular expression of a high-affinity transporter for cationic amino acids in Arabidopsis.
Resumo:
In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.
Resumo:
Because repeated injury of the endothelium and subsequent turnover of intimal and medial cells have been implicated in atherosclerosis, we examined telomere length, a marker of somatic cell turnover, in cells from these tissues. Telomere lengths were assessed by Southern analysis of terminal restriction fragments (TRFs) generated by HinfI/Rsa I digestion of human genomic DNA. Mean TRF length decreased as a function of population doublings in human endothelial cell cultures from umbilical veins, iliac arteries, and iliac veins. When endothelial cells were examined for mean TRF length as a function of donor age, there was a significantly greater rate of decrease for cells from iliac arteries than from iliac veins (102 bp/yr vs. 47 bp/yr, respectively, P < 0.05), consistent with higher hemodynamic stress and increased cell turnover in arteries. Moreover, the rate of telomere loss as a function of donor age was greater in the intimal DNA of iliac arteries compared to that of the internal thoracic arteries (147 bp/yr vs. 87 bp/yr, respectively, P < 0.05), a region of the arterial tree subject to less hemodynamic stress. This indicates that the effect is not tissue specific. DNA from the medial tissue of the iliac and internal thoracic arteries showed no significant difference in the rates of decrease, suggesting that chronic stress leading to cellular senescence is more pronounced in the intima than in the media. These observations extend the use of telomere size as a marker for the replicative history of cells and are consistent with a role for focal replicative senescence in cardiovascular diseases.
Resumo:
Previously, researchers have speculated that genetic engineering can improve the long-term function of vascular grafts which are prone to atherosclerosis and occlusion. In this study, we demonstrated that an intraoperative gene therapy approach using antisense oligodeoxynucleotide blockage of medial smooth muscle cell proliferation can prevent the accelerated atherosclerosis that is responsible for autologous vein graft failure. Selective blockade of the expression of genes for two cell cycle regulatory proteins, proliferating cell nuclear antigen and cell division cycle 2 kinase, was achieved in the smooth muscle cells of rabbit jugular veins grafted into the carotid arteries. This alteration of gene expression successfully redirected vein graft biology away from neointimal hyperplasia and toward medial hypertrophy, yielding conduits that more closely resembled normal arteries. More importantly, these genetically engineered grafts proved resistant to diet-induced atherosclerosis. These findings establish the feasibility of developing genetically engineered bioprostheses that are resistant to failure and better suited to the long-term treatment of occlusive vascular disease.
Resumo:
Introdução: O tratamento da Insuficiência Venosa Crônica (IVC) é baseado na correção dos refluxos e obstruções ao fluxo sanguíneo venoso. A detecção, a gravidade e o tratamento dessas obstruções venosas, responsáveis pelos sinais e sintomas da IVC, têm sido recentemente estudados e melhor compreendidos. Estes estudos não definem qual o grau de obstrução significativa nem os critérios ultrassonográficos para sua detecção. O objetivo deste estudo foi determinar critérios ultrassonográficos para o diagnóstico das obstruções venosas ilíacas, avaliando a concordância deste método com o ultrassom intravascular (UI) em pacientes portadores de IVC avançada. Métodos: Foram avaliados 15 pacientes (30 membros; 49,4 ± 10,7 anos; 1 homem) com IVC inicial (Classificação Clínica-Etiológica-Anatômica-Physiopatológica - CEAP C1-2) no grupo I (GI) e 51 pacientes (102 membros; 50,53 ± 14,5 anos; 6 homens) com IVC avançada (CEAP C3-6) no grupo II (GII) pareados por sexo, idade e etnia. Todos pacientes foram submetidos à entrevista clínica e à ultrassonografia vascular com Doppler (UV-D), sendo obtidas as medidas de fasicidade de fluxo, os índices de fluxo e velocidades venosas femorais, e as relações de velocidade e de diâmetro da obstrução ilíaca. Foi analisado o escore de refluxo multisegmentar. Os indivíduos do GI foram avaliados por 3 examinadores independentes. Os pacientes do GII foram submetidos ao UI, sendo obtidos a área dos segmentos venosos comprometidos e comparados com os resultados obtidos pelo UV-D, agrupados em 3 categorias: obstruções < 50%; obstruções entre 50-79% e obstruções >= 80%. Resultados: A classe de severidade clinica CEAP predominante no GI foi C1 em 24/30 (80%) membros, e C3 em 54/102 (52,9%) membros no GII. O refluxo foi severo (escore de refluxo multisegmentar >= 3) em 3/30 (10%) membros no grupo I, e em 45/102 (44,1%) membros no grupo II (p<0,001). Houve uma concordância moderadamente elevada entre o UV-D e o UI, quando agrupadas em 3 categorias (K=0,598; p<0,001), e uma concordância elevada quando agrupadas em 2 categorias (obstruções <50% e >= 50%) (K= 0,784; p<0,001). Os melhores pontos de corte e sua correlação com o UI foram: índice de velocidade (0,9; r=-0,634; p<0,001); índice de fluxo (0,7; r=-0,623; p<0,001); relação de obstrução (0,5; r=0,750; p<0,001); relação de velocidade (2,5; r= 0,790; p<0,001); A ausência de fasicidade de fluxo esteve presente em 88,2% dos pacientes com obstrução >=80% ao UV-D. Foi construído um algoritmo ultrassonográfico vascular, utilizando as medidas e os pontos de corte descritos obtendo-se uma acurácia de 79,6% para 3 categorias (K=0,655; p<0,001) e de 86,7% para 2 categorias (k=0,730; p<0,001). Conclusões: O UV-D apresentou uma concordância elevada com o UI na detecção de obstruções >= 50%. A relação de velocidade na obstrução >= 2,5 é o melhor critério para detecção de obstruções venosas significativas em veias ilíacas.
Resumo:
This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.
Resumo:
Los mármoles comerciales "Marrón Imperial" y "Marrón Emperador" son dolomías brechoides que de acuerdo con la clasificación del MIA pertenece al Grupo C de mármoles comerciales. Se determinan sus parámetros petrofísicos según la norma UNE. Sus rasgos petrológicos se estudian mediante microscopio petrográfico de luz transmitida y microscopio electrónico de barrido (MEB) (en modo de electrones secundarios y electrones retrodispersados). Estas rocas son básicamente dolomías mesocristalinas con abundantes vénulas calcíticas politexturales relacionadas con procesos de brechificación y de dolomitización. Rasgos kársticos aumentan la complejidad petrológica de estas rocas ornamentales cuyo litosoma son las dolomías masivas del Cretácico Superior (¿Turoniense?) del dominio Prebético Externo. El material explotado pertenece a una alineación morfoestructural que va desde Jumilla hasta el NE de Caudete y está relacionado con la falla Jumilla-Yecla-Caudete-Font de la Figuera. La relación entre esta falla y las dolomías turonienses son el principal criterio de exploración de estas rocas ornamentales.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.