966 resultados para Unifac Group Contribution
Resumo:
This paper presents the first microwave spectroscopic investigation on hexafluoroisopropanol (HFIP). A pulsed nozzle Fourier transform microwave spectrometer has been used to determine the rotational constants for HFIP as A = 2105.12166(18) MHz, B = 1053.99503(12) MHz, and C = 932.33959(13) MHz. In addition, five isotopologues of HFIP have been observed experimentally to determine the accurate structure of HFIP. The observed spectrum could be assigned to the most stable conformer of HFIP, called antiperiplanar. Available spectroscopic information and ab initio calculations on five prototype molecules helped in exploring the torsional behavior of molecules having a CF3-C-CF3 group. Two-dimensional potential energy surfaces have been analyzed for all molecules, which explained the presence/absence of doubling in the rotational transitions. With the help of natural bond orbital (NBO) analysis, reasons for the conformational preference of HFIP have been explained.
Resumo:
While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as -F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C···Y interaction, which could be called 'carbon bonding'. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the 'hydrophobic interactions'.
Resumo:
A hitherto unseen rotation of the isopropyl group in the solid state, predicted to be forbidden based on theoretical investigations, is reported. This C-C rotation observed during the temperature dependent single-crystal-to-single-crystal transformation is attributed to the concomitant changes in molecular structure and intermolecular packing.
Resumo:
In this paper we prove weighted mixed norm estimates for Riesz transforms on the Heisenberg group and Riesz transforms associated to the special Hermite operator. From these results vector-valued inequalities for sequences of Riesz transforms associated to generalised Grushin operators and Laguerre operators are deduced.
Resumo:
We examine the deflected mirage mediation supersymmetry breaking (DMMSB) scenario, which combines three supersymmetry breaking scenarios, namely anomaly mediation, gravity mediation and gauge mediation using the one-loop renormalization group invariants (RGIs). We examine the effects on the RGIs at the threshold where the gauge messengers emerge, and derive the supersymmetry breaking parameters in terms of the RGIs. We further discuss whether the supersymmetry breaking mediation mechanism can be determined using a limited set of invariants, and derive sum rules valid for DMMSB below the gauge messenger scale. In addition we examine the implications of the measured Higgs mass for the DMMSB spectrum.
Resumo:
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Resumo:
The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero-shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X-and Y-group for a particular Z-can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. (C) 2015 Wiley Periodicals, Inc.
Resumo:
Nonprotein amino acids are being extensively used in the design of synthetic peptides to create new structure mimics. In this study we report the effect of methylene group insertions in a heptapeptide Boc-Ala(1)-Leu(2)-Aib(3)-Xxx(4)-Ala(5)-Leu(6)-Aib(7)-OMe which nicely folds into a mixed 3(10)-/-helical structure when Xxx= Ala. Analogs of this peptide have been made and studied by replacing central Xxx(4) residue with Glycine (-residue), -Alanine (-la), -aminobutyric acid (Gaba), and epsilon-aminocaproic acid (epsilon-Aca). NMR and circular dichroism were used to study the solution structure of these peptides. Crystals of the peptides containing alanine, -la, and Gaba reveal that increasing the number of central methylene (-CH2-) groups introduces local perturbations even as the helical structure is retained. (c) 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 720-732, 2015.
Resumo:
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N = 3n + 1 approximate to 500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with N-A not equal N-B. The ground state (GS) and spin densities rho(r) = < S-r(z)> at site r are quite different for junctions with S = 1/2, 1, 3/2, and 2. The GS has finite total spin S-G = 2S(S) for even (odd) N and for M-G = S-G in the S-G spin manifold, rho(r) > 0(< 0) at sites of the larger (smaller) sublattice. S = 1/2 junctions have delocalized states and decreasing spin densities with increasing N. S = 1 junctions have four localized S-z = 1/2 states at the end of each arm and centered on the junction, consistent with localized states in S = 1 chains with finite Haldane gap. The GS of S = 3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S = 3/2 or 2 junctions.
Resumo:
Recently, research in copper-based quaternary chalcogenide materials has been found to be interesting for the study of thermoelectric properties because of their low thermal conductivity due to complex crystal structures. In the present work, stoichiometric quaternary chalcogenide compounds Cu2CdSn1-xInxSe4(x = 0, 0.025, 0.05, 0.1) were prepared by solid state synthesis. The powder X-ray diffraction patterns of all the samples showed a tetragonal crystal structure with the space group I (4) over bar 2m of the main phase. In addition to this phase, a small amount of impurity phase CdSe was present in all the samples, as confirmed by Rietveld analysis. The elemental composition of all the samples characterized by an Electron Probe Micro Analyzer showed a slight deviation from the nominal composition. The transport properties were measured in the temperature range of 350 K-723 K. The positive Seebeck coefficient of all the compounds indicate that the majority carriers are holes. The Seebeck coefficient and electrical resistivity did not follow the trend in the expected manner with In doping, which could be influenced by the presence of the impurity phases. The total thermal conductivity of all the samples was dominated by the lattice thermal conductivity, while the electronic contribution was very small due to the low carrier contribution. A lattice thermal conductivity decrease with an increase of temperature indicates the dominance of phonon-phonon scattering at higher temperatures. The maximum figure of merit zT = 0.30 at 723 K was obtained for the compound Cu2CdSn0.9In0.1Se4. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Gravity mediated supersymmetry breaking becomes comparable to gauge mediated supersymmetry breaking contributions when messenger masses are close to the GUT scale. By suitably arranging the gravity contributions, one can modify the soft supersymmetry breaking sector to generate a large stop mixing parameter and a light Higgs mass of 125 GeV. In this kind of hybrid models, however, the nice features of gauge mediation like flavor conservation, etc. are lost. To preserve the nice features, gravitational contributions should become important for lighter messenger masses and should be important only for certain fields. This is possible when the hidden sector contains multiple (at least two) spurions with hierarchical vacuum expectation values. In this case, the gravitational contributions can be organized to be ``just right.'' We present a complete model with two spurion hidden sector where the gravitational contribution is from a warped flavor model in a Randall-Sundrum setting. Along the way, we present simple expressions to handle renormalization group equations when supersymmetry is broken by two different sectors at two different scales.
Resumo:
Subgrid nonlinear interaction and energy transfer are analyzed using direct numerical simulations of isotropic turbulence. Influences of cutoff wave number at different ranges of scale on the energetics and dynamics have been investigated. It is observed that subgrid-subgrid interaction dominates the turbulent dynamics when cut-off wave number locates in the energy-containing range while resolved-subgrid interaction dominates if it is in the dissipation range; By decomposing the subgrid energy transfer and nonlinear interaction into 'forward' and 'backward' groups according to the sign of triadic interaction, we find that individually each group has very large contribution, but the net of them is much smaller, implying that tremendous cancellation happens between these two groups.
Resumo:
For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.