1000 resultados para Under-qualification
Resumo:
The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).
Resumo:
B-1 Medicaid Reports -- The monthly Medicaid series of eight reports provide summaries of Medicaid eligibles, recipients served, and total payments by county, category of service, and aid category. These reports may also be known as the B-1 Reports. These reports are each available as a PDF for printing or as a CSV file for data analysis. Report Report name IAMM1800-R001--Medically Needy by County - No Spenddown and With Spenddown; IAMM1800-R002--Total Medically Needy, All Other Medicaid, and Grand Total by County; IAMM2200-R002--Monthly Expenditures by Category of Service; IAMM2200-R003--Fiscal YTD Expenditures by Category of Service; IAMM3800-R001--ICF & ICF-MR Vendor Payments by County; IAMM4400-R001--Monthly Expenditures by Eligibility Program; IAMM4400-R002--Monthly Expenditures by Category of Service by Program; IAMM4600-R002--Elderly Waiver Summary by County.
Resumo:
In Rio Grande do Sul State (RS), Southern Brazil, aluminum saturation in many areas under no-till system is high and base saturation low in the 0.10-0.20 m layer (subsurface), which may reduce the grain yield of annual crops. The objective of this study was to evaluate if the occurrence of high aluminum saturation and low base saturation in the subsurface, under a no-till system, represents a restrictive environment for crop production, as well as to evaluate forms of lime incorporation for soil acidity correction in the subsurface. For this purpose, an experiment was carried out with soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) crops, in a Rhodic Hapludox (USDA, 1999) with sandy loam texture, under no-till for four years in the county of Tupanciretã (RS). The six treatments were: no-tillage with and without lime, plowing with and without lime, and chiseling with and without lime. The values of pH-H2O, aluminum saturation and base saturation were evaluated 24 months after treatment application in the layers 0-0.05; 0.05-0.10; 0.10-0.15; 0.15-0.20 and 0.20-0.30 m. The yields of soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) were evaluated. Soil acidity in the subsurface did not affect crop yield when the acidity in the layer from 0-0.10 m was at levels for which lime application is not recommended, according to CQFSRS/SC (2004). Lime incorporation through plowing was the most efficient way of correcting acidity at deeper levels.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
There are several regions of the world where soil N analysis and/or N budgets are not used to determine how much N to apply, resulting in higher than needed N inputs, especially when manure is used. One such region is the North Central "La Comarca Lagunera", one of the most important dairy production areas of Mexico. We conducted a unique controlled greenhouse study using 15N fertilizer and 15N isotopic-labeled manure that was labeled under local conditions to monitor N cycling and recovery under higher N inputs. The manure-N treatment was applied only once and was incorporated in the soil before planting the first forage crop at an equivalent rate of 30, 60 and 120 Mg ha-1 dry manure. The 15N treatments were equivalent to 120 and 240 kg ha-1 (NH4)2SO4-N for each crop. The total N fertilizer for each N fertilized treatment were 360, and 720 kg ha-1 N. We found very low N recoveries: about 9 % from the manure N inputs, lower than the 22 to 25 % from the fertilizer N inputs. The manure N recovered belowground in soil and roots ranged from 82 to 88 %. The low recoveries of N by the aboveground and low soil inorganic nitrate (NO3-N) and ammonium (NH4-N) content after the third harvested suggested that most of the 15N recovered belowground was in the soil organic form. The losses from manure N inputs ranged from 3 to 11 %, lower than the 34 to 39 % lost from fertilizer N sources. Our study shows that excessive applications of manure or fertilizer N that are traditionally used in this region will not increase the rate of N uptake by aboveground compartment but will increase the potential for N losses to the environment.
Resumo:
The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.
Resumo:
Peripheral inflammation induces persistent central sensitization characterized by mechanical allodynia and heat hyperalgesia that are mediated by distinct mechanisms. Compared to well-demonstrated mechanisms of heat hyperalgesia, mechanisms underlying the development of mechanical allodynia and contralateral pain are incompletely known. In this study, we investigated the distinct role of spinal JNK in heat hyperalgesia, mechanical allodynia, and contralateral pain in an inflammatory pain model. Intraplantar injection of complete Freund's adjuvant (CFA) induced bilateral mechanical allodynia but unilateral heat hyperalgesia. CFA also induced a bilateral activation (phosphorylation) of JNK in the spinal cord, and the phospho JNK1 (pJNK1) levels were much higher than that of pJNK2. Notably, both pJNK and JNK1 were expressed in GFAP-positive astrocytes. Intrathecal infusion of a selective peptide inhibitor of JNK, D-JNKI-1, starting before inflammation via an osmotic pump, reduced CFA-induced mechanical allodynia in the maintenance phase but had no effect on CFA-induced heat hyperalgesia. A bolus intrathecal injection of D-JNKI-1 or SP600126, a small molecule inhibitor of JNK also reversed mechanical allodynia bilaterally. In contrast, peripheral (intraplantar) administration of D-JNKI-1 reduced the induction of CFA-induced heat hyperalgesia but did not change mechanical allodynia. Finally, CFA-induced bilateral mechanical allodynia was attenuated in mice lacking JNK1 but not JNK2. Taken together, our data suggest that spinal JNK, in particular JNK1 plays an important role in the maintenance of persistent inflammatory pain. Our findings also reveal a unique role of JNK1 and astrocyte network in regulating tactile allodynia and contralateral pain.
Resumo:
Different management systems tend to modify soil structure and porosity over the years. The aim of this study was to study modifications in the morphostructure and porosity of dystroferric Red Latosol (Oxisol) under conventional tillage and no-tillage over a 31- year period. The study began with the description of soil profiles based on the cropping profile method, to identify the most compact structures, define sample collection points for physical and chemical analysis, and determine the water retention curve. A forest soil profile was described and used as reference. The results showed that, under conventional tillage, the microaggregate structure of the Oxisol was fragmented between 0 and 0.20 m, and compact (bulk density = 1.52 Mg m-3) in the sub-surface layer between 0.20 and 0.50 m. Under no-tillage, the structure became compacted (bulk density = 1.40 Mg m-3) between 0 and 0.60 m, but contained fissures and biopores. The volume of the class with a pore diameter of > 100 µm under no-tillage was limited, but practically non-existent in the conventional management system. On the other hand, the classes with a pore diameter of < 100 µm were not affected by the type of soil management system.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
B-1 Monthly Report of Medical Services Provided under Title XIX of the Social Security Act, May 2011
Resumo:
B-1 Medicaid Reports -- The monthly Medicaid series of eight reports provide summaries of Medicaid eligibles, recipients served, and total payments by county, category of service, and aid category. These reports may also be known as the B-1 Reports. These reports are each available as a PDF for printing or as a CSV file for data analysis. Report Report name IAMM1800-R001--Medically Needy by County - No Spenddown and With Spenddown; IAMM1800-R002--Total Medically Needy, All Other Medicaid, and Grand Total by County; IAMM2200-R002--Monthly Expenditures by Category of Service; IAMM2200-R003--Fiscal YTD Expenditures by Category of Service; IAMM3800-R001--ICF & ICF-MR Vendor Payments by County; IAMM4400-R001--Monthly Expenditures by Eligibility Program; IAMM4400-R002--Monthly Expenditures by Category of Service by Program; IAMM4600-R002--Elderly Waiver Summary by County.
Resumo:
No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.