928 resultados para Uncertainty quantification
Resumo:
Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.
Resumo:
Recently, Branzei, Dimitrov, and Tijs (2003) introduced cooperative interval-valued games. Among other insights, the notion of an interval core has been coined and proposed as a solution concept for interval-valued games. In this paper we will present a general mathematical programming algorithm which can be applied to find an element in the interval core. As an example, we discuss lot sizing with uncertain demand to provide an application for interval-valued games and to demonstrate how interval core elements can be computed. Also, we reveal that pitfalls exist if interval core elements are computed in a straightforward manner by considering the interval borders separately.
Resumo:
Methylation of cytosine residues at CpG sites is involved in various biological processes to control gene regulation and gene expression. Global DNA methylation is changed in different tumors and in cloned animals. Global DNA methylation can be accurately quantified by dot blot analysis with infrared (IR) fluorophores. Methylated lambda DNA was used as model DNA to develop and validate an immunochemical assay with IR fluorescence detection. Two different IR fluorophores were used, one to detect 5-methylcytosine and another to account for DNA loading. A sensitive infrared detection method was established which is suitable for accurate and reproducible quantification of global DNA methylation across a wide dynamic range. This method was subsequently employed to quantify global DNA methylation in liver and in muscle tissues of boars which have received either a control diet or a methyl supplemented diet in an ongoing study. A significant difference in global DNA methylation is indicated in muscle but not in liver tissue between the two groups of boars.
Resumo:
Mycoplasma conjunctivae, the causative agent of infectious keratoconjunctivitis (IKC), was recently detected in asymptomatic Alpine ibex (Capra ibex ibex). This suggested that an external source of infection may not be required for an IKC outbreak in wildlife but might be initiated by healthy carriers, which contradicted previous serologic investigations in chamois. Our aims were to 1) assess the prevalence of M. conjunctivae among asymptomatic ibex and Alpine chamois (Rupicapra rupicapra rupicapra) and its frequency in IKC-affected animals, 2) determine mycoplasma loads in different disease stages, and 3) characterize the M. conjunctivae strains involved. Eye swabs from 654 asymptomatic and 204 symptomatic animals were collected in diverse Swiss regions between 2008 and 2010, and tested by TaqMan real-time PCR. Data analysis was performed considering various patterns of IKC occurrence in the respective sampling regions. Strains from 24 animals were compared by cluster analysis. Prevalence of M. conjunctivae was 5.6% (95% confidence interval [CI]: 3.7-8.1%) in asymptomatic ibex and 5.8% (CI: 3.0-9.9%) in asymptomatic chamois, with significant differences between years and regions in both species. Detection frequency in symptomatic animals was significantly higher during IKC outbreaks than in nonepidemic situations (i.e., regular but low incidence or sporadic occurrence). Mycoplasma load was significantly lower in eyes from healthy carriers and animals with mild signs than from animals with moderate and severe signs. Although some strains were found in both asymptomatic and diseased animals of the same species, others apparently differed in their pathogenic potential depending on the infected species. Overall, we found a widespread occurrence of M. conjunctivae in wild Caprinae with and without IKC signs. Our results confirm the central role of M. conjunctivae in outbreaks but suggest that other infectious agents may be involved in IKC cases in nonepidemic situations. Additionally, presence and severity of signs are related to the quantity of M. conjunctivae in the eyes rather than to the strain. We propose that individual or environmental factors influence the clinical expression of the disease and that persistence of M. conjunctivae in populations of wild Caprinae cannot be excluded.
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
Purpose: To quantify the in vivo deformations of the popliteal artery during leg flexion in subjects with clinically relevant peripheral artery disease (PAD). Methods: Five patients (4 men; mean age 69 years, range 56–79) with varying calcification levels of the popliteal artery undergoing endovascular revascularization underwent 3-dimensional (3D) rotational angiography. Image acquisition was performed with the leg straight and with a flexion of 70°/20° in the knee/hip joints. The arterial centerline and the corresponding branches in both positions were segmented to create 3D reconstructions of the arterial trees. Axial deformation, twisting, and curvatures were quantified. Furthermore, the relationships between the calcification levels and the deformations were investigated. Results: An average shortening of 5.9%±2.5% and twist rate of 3.8±2.2°/cm in the popliteal artery were observed. Maximal curvatures in the straight and flexed positions were 0.12±0.04 cm−1 and 0.24±0.09 cm−1, respectively. As the severity of calcification increased, the maximal curvature in the straight position increased from 0.08 to 0.17 cm−1, while an increase from 0.17 to 0.39 cm−1 was observed for the flexed position. Axial elongations and arterial twisting were not affected by the calcification levels. Conclusion: The popliteal artery of patients with symptomatic PAD is exposed to significant deformations during flexion of the knee joint. The severity of calcification directly affects curvature, but not arterial length or twisting angles. This pilot study also showed the ability of rotational angiography to quantify the 3D deformations of the popliteal artery in patients with various levels of calcification.
Resumo:
Because of the large variability in the pharmacokinetics of anti-HIV drugs, therapeutic drug monitoring in patients may contribute to optimize the overall efficacy and safety of antiretroviral therapy. An LC–MS/MS method for the simultaneous assay in plasma of the novel antiretroviral agents rilpivirine (RPV) and elvitegravir (EVG) has been developed to that endeavor. Plasma samples (100 μL) extraction is performed by protein precipitation with acetonitrile, and the supernatant is subsequently diluted 1:1 with 20-mM ammonium acetate/MeOH 50:50. After reverse-phase chromatography, quantification of RPV and EVG, using matrix-matched calibration samples, is performed by electrospray ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The stable isotopic-labeled compounds RPV-13C6 and EVG-D6 were used as internal standards. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<6.4%), as well as EVG and RPV short and long-term stability in plasma. Calibration curves were validated over the clinically relevant concentrations ranging from 5 to 2500 ng/ml for RPV and from 50 to 5000 ng/ml for EVG. The method is precise (inter-day CV%: 3–6.3%) and accurate (3.8–7.2%). Plasma samples were found to be stable (<15%) in all considered conditions (RT/48 h, +4°C/48 h, −20°C/3 months and 60°C/1 h). Selected metabolite profiles analysis in patients' samples revealed the presence of EVG glucuronide, that was well separated from parent EVG, allowing to exclude potential interferences through the in-source dissociation of glucuronide to parent drug. This new, rapid and robust LCMS/MS assay for the simultaneous quantification of plasma concentrations of these two major new anti-HIV drugs EVG and RPV offers an efficient analytical tool for clinical pharmacokinetics studies and routine therapeutic drug monitoring service.
Resumo:
PURPOSE To investigate the ex vivo performance of high-resolution computed tomography (CT) for quantitative assessment of percentage diameter stenosis in coronary arteries compared to histopathology. MATERIALS AND METHODS High-resolution CT was performed in 26 human heart specimens after the injection of iodinated contrast media into the coronary arteries. Coronary artery plaques were visually identified on CT images and the grade of stenosis for each plaque was measured with electronic calipers. All coronary plaques were characterized by histopathology according to the Stary classification, and the percentage of stenosis was measured. RESULTS CT depicted 84% (274/326) of all coronary plaques identified by histology. Missed plaques by CT were of Stary type I (n=31), type II (n=16), and type III (n=5). The stenosis degree significantly correlated between CT and histology (r=0.81, p<0.001). CT systematically overestimated the stenosis of calcified plaques (mean difference - 11.0 ± 9.5%, p<0.01) and systematically underestimated the stenosis of non-calcified plaques (mean difference -6.8 ± 10.4%, p<0.05), while there was no significant difference for mixed-type plaques (mean difference -0.4 ± 11.7%, p=0.85). There was a significant underestimation of stenosis degree as measured by CT for Stary II plaques (mean difference -14 ± 9%, p<0.01) and a significant overestimation for Stary VII plaques (mean difference 9 ± 10%, p<0.05), but there was no significant difference in stenosis degree between both modalities for other plaque types. CONCLUSIONS High-resolution CT reliably depicts advanced stage coronary plaques with an overall good correlation of stenosis degree compared to histology, however, the degree of stenosis is systematically overestimated in calcified and underestimated in non-calcified plaques.
Resumo:
This progress report focuses on the contribution of tree-ring series to rockfall research and on recent development and challenges in the field. Dendrogeomorphic techniques have been used extensively since the early 2000s and several approaches have been developed to extract rockfall signals from tree-ring records of conifer trees. The reconstruction of rockfall chronologies has been hampered in the past by sample sizes that decrease as one goes back in time, as well as by a paucity of studies that include broadleaved tree species, which are in fact quite common in rockfall-prone environments. In this report, we propose a new approach considering impact probability and quantification of uncertainty in the reconstruction of rockfall time series as well as a quantitative estimate of presumably missed events. In addition, we outline new approaches and future perspectives for the inclusion of woody vegetation in hazard assessment procedures, and end with future thematic perspectives.