975 resultados para Ultraviolet radiation Measurement
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
Conceptual design of the integral measurement system of the radiation dose of the fuel elements for the ALFRED reactor.
Resumo:
This study describes the effects of different intensities of UVB radiation on growth and morphology of early development stages of Iridaea cordata in germlings, young gametophytes originated in the laboratory and young fronds collected in the Magellan Strait, Chile. The experiments were carried out during four weeks in controlled conditions of temperature and photoperiod and the results were compared with a control treatment (without UVB). All UVB irradiation treatments caused bleaching and decrease in growth rates of germlings. Additionally, initial upright fronds were not observed in any of the UVB treatments, where as those cultivated in UVB absence developed erect ones in the second week of culture. The young gametophytes exhibited morphological alteration (small number and size of basal ramifications, curling of tips, bleaching and necrosis) and decrease in growth when exposed to UVB radiation. Young fronds collected from the field showed mainly morphological alterations (curling of frond). Morphological alterations in young gametophytes and young fronds of I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, high level of UVB radiation can produce irreparable damage, such as necrosis, observed in young gametophytes originated in the laboratory. Finally, the UVB effects on early developmental stages of I. cordata depend on the UVB irradiance and time of exposition.
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
In this study we assessed the protective effect of topical application of Pothomorphe umbellata extract on ultraviolet B (UVB)-induced skin lesion parameters in hairless mouse epidermis. A single dose of UVB irradiation (0.23 kJ/m(2)) resulted in a significant decrease in thymine dimer-positive cells and apoptotic sunburn cells, with an increase in p53 and proliferating cell nuclear antigen-positive cells in the epidermis. After 5 weeks (total dose 13.17 kJ/m(2)) and 15 weeks (total dose 55.51 kJ/m(2)) of irradiation, P. umbellata treatment inhibited the hyperplasic response and induced an increase in p53-positive cells. These findings suggest that P. umbellata extract affords protection against UVB-induced skin lesions.
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
Radical formation in ultem following gamma-radiolysis has been reassessed, and the G(R*) values at different temperatures have been determined by ESR spectroscopy. The radical assignment and radical reactivity have been re-examined by photobleaching and thermal annealing studies. Photobleachable radical anions were found to comprise approximate to40% of the total number of radicals formed on radiolysis at 77 K. Spectral subtraction methods, ESR spectral simulations, measurement of g-values and the hyperfine splitting constants were used to identify the other radical intermediates. The principal chain scission radicals are formed due to scission of the main-chain at (i) the ether linkage, (ii) the isopropylidene group and (iii) the imide ring in the main chain. The side chain methyl groups of the isopropylidine units also lose hydrogen to form methylene radicals. The five-line spectrum observed to decay in the temperature range 370-430 K, which has not been assigned previously, has been identified as being characteristic of a di-substituted benzyl radical. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Doses of 60Co gamma radiation with 2.5; 5; 7.5; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 80; 160; 320 and 640 Gy were applied to 1,080 snails Biomphalaria straminea, an intermediate host of Schistosoma mansoni, divided in groups containing 30 mollusks. In addition, 60 non irradiated snails were kept as control. Fifty percent of the population was kept in colonies (allowing cross fertilization) while the other half was maintained in sexual isolation (allowing self fertilization) and during one month their growth was observed through the daily measurement of the shell diameter. Results showed that after 20 Gy doses the growth in shell diameter of irradiated snails was greater than that of the control group after 30 days. At this dose the snail size was the greatest, among all isolated groups. The 80 Gy doses also induced the final shell diameter of isolated snails to be greater then that observed in the control groups. As this effect was most evident among the isolated snails, a possible hormonal role may have been involved in the observed phenomena, which is under investigation with the objective of identifying any future applications that this could have to schistosomiasis control.
Resumo:
Rapport de synthèse : Introduction : le vieillissement cutané est un processus biologique complexe auquel participe une exposition excessive au rayonnement ultraviolet du soleil. En particulier, les longueurs d'onde des rayons ultraviolets A et B (UV-A et UV-B) peuvent induire une augmentation de la synthèse de protéases, comme la métalloprotéinase matricielle 1 (MMP-1), qui est impliquée dans le processus de vieillissement. La thermothérapie par infrarouges, dont les longueurs d'onde sont plus longues que celles des UV, est largement utilisée à des fins thérapeutiques ou cosmétiques. Or, il a été démontré que les infrarouges en filtration aqueuse (IRFA) pouvaient induire une augmentation de la production de MMP-1 et par conséquent être nocifs. Il serait donc intéressant d'évaluer les effets des IRFA au niveau cellulaire et moléculaire. But Expérimental : étudier les effets des lampes à infrarouges en filtration aqueuse utilisées en clinique sur des fibroblastes cutanés humains en culture, afin d'analyser l'expression du gène codant pour la protéine MMP-1. Méthode : des fibroblastes cutanés humain ont été irradiés d'une part avec approximativement 88% d'IRFA (780-1400 nm) et 12% de lumière rouge (LR, 665-780 nm) avec 380 mW/cm2 IRFA(+LR) (333 mW/cm2 IRFA) et d'autre part avec des UV-A comme contrôle. Des courbes de survie cellulaire ont été établies après une exposition allant de 15 minutes à 8 heures au IRFA(+LR) (340-10880 J/cm2 wIRA(+RL), 300-9600 J/cm2 wIRA) ou de 15 à 45 minutes aux UV-A(+BL) (25-75 J/cm2 UV-A(+BL). L'induction de l'ARNm du gène de la MMP-1 a été analysé dans les fibroblastes cutanés humain à deux températures physiologiques (30°C et 37°C) lors d'expositions uniques de 15 à 60 minutes aux IRFA(+LR) (340-1360 J/cm2 IRFA(+LR), 300-1200 J/cm2 IRFA) ou de 30 minutes aux UV-A(+BL) (50 J/cm2 UVA(+BL)). De plus, nous avons effectué des irradiations répétées, une a chaque passage cellulaire jusqu'au passage. 10 de 15 minutes d'IRFA(+LR) 340 J/cm2 IRFA(+LR), 300 J/cm2 IRFA) . Résultats : une exposition unique aux UV-A (+BL) entraîne chez des fibroblastes cutanés humains une augmentation de la mort cellulaire, ainsi qu'une forte augmentation de l'expression du gène codant pour la MMP-1. L'augmentation mise en évidence pour cet ARNm varie en fonction de la technique utilisée : elle est de 11 ± 1 fois par RT-PCR classique, de 76 ± 2 fois par RT-PCR quantitative à 30°C, et de 75 ± 1 fois par RT-PCR quantitative à 37°C. Par contre, une exposition unique ou répétée aux IRFA (+LR) n'induit aucune augmentation de la mort cellulaire, ni de l'expression de l'ARNm de la MMP-1 chez ces fibroblastes. Conclusions : les résultats de cette étude montrent que, contrairement aux rayons ultraviolets, les IRFA (+LR) ne semblent impliqués ni dans le vieillissement, ni dans la mort cellulaire, même utilisés à des doses très élevées. Ces résultats sont en accord avec certaines investigations in vivo montrant une induction de MMP-1 par des UV et non des infrarouges. Ces dernières études suggèrent d'ailleurs plutôt un rôle protecteur des IRFA (+LR).
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
Perfusion CT studies of regional cerebral blood flow (rCBF), involving sequential acquisition of cerebral CT sections during IV contrast material administration, have classically been reported to be achieved at 120 kVp. We hypothesized that using 80 kVp should result in the same image quality while significantly lowering the patient's radiation dose, and we evaluated this assumption. In five patients undergoing cerebral CT survey, one section level was imaged at 120 kVp and 80 kVp, before and after IV administration of iodinated contrast material. These four cerebral CT sections obtained in each patient were analyzed with special interest to contrast, noise, and radiation dose. Contrast enhancement at 80 kVp is significantly increased (P < .001), as well as contrast between gray matter and white matter after contrast enhancement (P < .001). Mean noise at 80 kVp is not statistically different (P = .042). Finally, performance of perfusion CT studies at 80 kVp, keeping mAs constant, lowers the radiation dose by a factor of 2.8. We, thus, conclude that 80 kVp acquisition of perfusion CT studies of rCBF will result in increased contrast enhancement and should improve rCBF analysis, with a reduced patient's irradiation.
Resumo:
The introduction of interventional radiology (IR) procedures in the 20th century has demonstrated significant advantages over surgery procedures. As a result, their number is continuously rising in diagnostic, as well as, in therapy field and is connected with progress in highly sophisticated equipment used for these purposes. Nowadays, in the European countries more than 400 fluoroscopically guided IR procedures were identified with a 10-12% increase in the number of IR examinations every year (UNSCEAR, 2010). Depending on the complexity of the different types of the interventions large differences in the radiation doses of the staff are observed.The staff that carries out IR procedures is likely to receive relatively high radiation doses, because IR procedures require the operator to remain close to the patient and close to the primary radiation beam. In spite of the fact that the operator is shielded by protective apron, the hands, eyes and legs remain practically unshielded. For this reason, one of the aims of the ORAMED project was to provide a set of standardized data on extremity doses for the personnel that are involved in IR procedures and to optimize their protection by evaluating the various factors that affect the doses. In the framework of work package 1 of the ORAMED project the impact of protective equipment, tube configuration and access routes were analyzed for the selected IR procedures. The position of maximum dose measured is also investigated. The results of the extremity doses in IR workplaces are presented in this study together with the influence of the above mentioned parameters on the doses.