971 resultados para Ultrasound Imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—There are sometimes occasions when ultrasound beamforming is performed with only a subset of the total data that will eventually be available. The most obvious example is a mechanically-swept (wobbler) probe in which the three-dimensional data block is formed from a set of individual B-scans. In these circumstances, non-blind deconvolution can be used to improve the resolution of the data. Unfortunately, most of these situations involve large blocks of three-dimensional data. Furthermore, the ultrasound blur function varies spatially with distance from the transducer. These two facts make the deconvolution process time-consuming to implement. This paper is about ways to address this problem and produce spatially-varying deconvolution of large blocks of three-dimensional data in a matter of seconds. We present two approaches, one based on hardware and the other based on software. We compare the time they each take to achieve similar results and discuss the computational resources and form of blur model that each requires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www-civ.eng.cam.ac.uk/cjb/papers/cp88.pdf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that focal thinning of cortical bone in the proximal femur may predispose a hip to fracture. Detecting such defects in clinical CT is challenging, since cortices may be significantly thinner than the imaging system's point spread function. We recently proposed a model-fitting technique to measure sub-millimetre cortices, an ill-posed problem which was regularized by assuming a specific, fixed value for the cortical density. In this paper, we develop the work further by proposing and evaluating a more rigorous method for estimating the constant cortical density, and extend the paradigm to encompass the mapping of cortical mass (mineral mg/cm(2)) in addition to thickness. Density, thickness and mass estimates are evaluated on sixteen cadaveric femurs, with high resolution measurements from a micro-CT scanner providing the gold standard. The results demonstrate robust, accurate measurement of peak cortical density and cortical mass. Cortical thickness errors are confined to regions of thin cortex and are bounded by the extent to which the local density deviates from the peak, averaging 20% for 0.5mm cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid glass-carbon 2D braided composites with varying carbon contents are impacted using a gas gun by impactors of masses 12.5 and 44.5. g, at impact energies up to 50. J. The damage area detected by ultrasound C-scan is found to increase roughly linearly with impact energy, and is larger for the lighter impactor at the same impact energy. The area of whitening of the glass tows on the distal side corresponds with the measured C-scan damage area. X-ray imaging shows more intense damage, at the same impact energy, for a higher-mass impactor. Braids with more glass content have a modest increase in density, decrease in modulus, and reduction in the C-scan area and dent depth at the impact site, particularly at the higher impact energies. Impact damage is found to reduce significantly the compressive strength, giving up to a 26% reduction at the maximum impact energy. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional 3D Integral imaging suffers from limited image depth range due to the fixed distance between the display panel and the lens array, while digital Fresnel holography suffers from a narrow viewing angle due to the lack of a high resolution spatial light modulator. This paper proposes an original system which combines the advantages of these two techniques to provide an integral imaging system of a reasonable viewing angle with accommodation cues. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that focal thinning of cortical bone in the proximal femur may predispose a hip to fracture. Detecting such defects in clinical CT is challenging, since cortices may be significantly thinner than the imaging system's point spread function. We recently proposed a model-fitting technique to measure sub-millimetre cortices, an ill-posed problem which was regularized by assuming a specific, fixed value for the cortical density. In this paper, we develop the work further by proposing and evaluating a more rigorous method for estimating the constant cortical density, and extend the paradigm to encompass the mapping of cortical mass (mineral mg/cm 2) in addition to thickness. Density, thickness and mass estimates are evaluated on sixteen cadaveric femurs, with high resolution measurements from a micro-CT scanner providing the gold standard. The results demonstrate robust, accurate measurement of peak cortical density and cortical mass. Cortical thickness errors are confined to regions of thin cortex and are bounded by the extent to which the local density deviates from the peak, averaging 20% for 0.5mm cortex. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.