945 resultados para UPWELLING ECOSYSTEM
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Biogenic reefs are important for habitat provision and coastal protection. Long-term datasets on the distribution and abundance of Sabellaria alveolata (L.) are available from Britain. The aim of this study was to combine historical records and contemporary data to (1) describe spatiotemporal variation in winter temperatures, (2) document short-term and long-term changes in the distribution and abundance of S. alveolata and discuss these changes in relation to extreme weather events and recent warming, and (3) assess the potential for artificial coastal defense structures to function as habitat for S. alveolata. A semi-quantitative abundance scale (ACFOR) was used to compare broadscale, long-term and interannual abundance of S. alveolata near its range edge in NW Britain. S. alveolata disappeared from the North Wales and Wirral coastlines where it had been abundant prior to the cold winter of 1962/1963. Population declines were also observed following the recent cold winters of 2009/2010 and 2010/2011. Extensive surveys in 2004 and 2012 revealed that S. alveolata had recolonized locations from which it had previously disappeared. Furthermore, it had increased in abundance at many locations, possibly in response to recent warming. S. alveolata was recorded on the majority of artificial coastal defense structures surveyed, suggesting that the proliferation of artificial coastal defense structures along this stretch of coastline may have enabled S. alveolata to spread across stretches of unsuitable natural habitat. Long-term and broadscale contextual monitoring is essential for monitoring responses of organisms to climate change. Historical data and gray literature can be invaluable sources of information. Our results support the theory that Lusitanian species are responding positively to climate warming but also that short-term extreme weather events can have potentially devastating widespread and lasting effects on organisms. Furthermore, the proliferation of coastal defense structures has implications for phylogeography, population genetics, and connectivity of coastal populations.
Resumo:
Biogenic reefs are important for habitat provision and coastal protection. Long-term datasets on the distribution and abundance of Sabellaria alveolata (L.) are available from Britain. The aim of this study was to combine historical records and contemporary data to (1) describe spatiotemporal variation in winter temperatures, (2) document short-term and long-term changes in the distribution and abundance of S. alveolata and discuss these changes in relation to extreme weather events and recent warming, and (3) assess the potential for artificial coastal defense structures to function as habitat for S. alveolata. A semi-quantitative abundance scale (ACFOR) was used to compare broadscale, long-term and interannual abundance of S. alveolata near its range edge in NW Britain. S. alveolata disappeared from the North Wales and Wirral coastlines where it had been abundant prior to the cold winter of 1962/1963. Population declines were also observed following the recent cold winters of 2009/2010 and 2010/2011. Extensive surveys in 2004 and 2012 revealed that S. alveolata had recolonized locations from which it had previously disappeared. Furthermore, it had increased in abundance at many locations, possibly in response to recent warming. S. alveolata was recorded on the majority of artificial coastal defense structures surveyed, suggesting that the proliferation of artificial coastal defense structures along this stretch of coastline may have enabled S. alveolata to spread across stretches of unsuitable natural habitat. Long-term and broadscale contextual monitoring is essential for monitoring responses of organisms to climate change. Historical data and gray literature can be invaluable sources of information. Our results support the theory that Lusitanian species are responding positively to climate warming but also that short-term extreme weather events can have potentially devastating widespread and lasting effects on organisms. Furthermore, the proliferation of coastal defense structures has implications for phylogeography, population genetics, and connectivity of coastal populations.
Resumo:
The objective of D6.1 is to make the Ecosystem software platform with underlying Software Repository, Digital Library and Media Archive available to the degree, that the RAGE project can start collecting content in the form of software assets, and documents of various media types. This paper describes the current state of the Ecosystem as of month 12 of the project, and documents the structure of the Ecosystem, individual components, integration strategies, and overall approach. The deliverable itself is the deployment of the described components, which is now available to collect and curate content. Whilst this version is not yet feature complete, full realization is expected within the next few months. Following this development, WP6 will continue to add features driven by the business models to be defined by WP7 later on in the project.
Resumo:
Salman, M. et al. (2016). Integrating Scientific Publication into an Applied Gaming Ecosystem. GSTF Journal on Computing (JoC), Volume 5 (Issue 1), pp. 45-51.
Resumo:
The dodo Raphus cucullatus Linnaeus, 1758, an extinct and flightless, giant pigeon endemic to Mauritius, has fascinated people since its discovery, yet has remained surprisingly poorly known. Until the mid-19th century, almost all that was known about the dodo was based on illustrations and written accounts by 17th century mariners, often of questionable accuracy. Furthermore, only a few fragmentary remains of dodos collected prior to the bird’s extinction exist. Our understanding of the dodo’s anatomy was substantially enhanced by the discovery in 1865 of subfossil bones in a marsh called the Mare aux Songes, situated in southeastern Mauritius. However, no contextual information was recorded during early excavation efforts, and the majority of excavated material comprised larger dodo bones, almost all of which were unassociated. Here we present a modern interdisciplinary analysis of the Mare aux Songes, a 4200-year-old multitaxic vertebrate concentration Lagerst€atte. Our analysis of the deposits at this site provides the first detailed overview of the ecosystem inhabited by the dodo. The interplay of climatic and geological conditions led to the exceptional preservation of the animal and associated plant remains at the Mare aux Songes and provides a window into the past ecosystem of Mauritius. This interdisciplinary research approach provides an ecological framework for the dodo, complementing insights on its anatomy derived from the only associated dodo skeletons known, both of which were collected by Etienne Thirioux and are the primary subject of this memoir.
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Within ecological research and environmental management, there is currently a focus on demonstrating the links between human well-being and wildlife conservation. Within this framework, there is a clear interest in better understanding how and why people value certain places over others. We introduce a new method that measures cultural preferences by exploring the potential of multiple online georeferenced digital photograph collections. Using ecological and social considerations, our study contributes to the detection of places that provide cultural ecosystem services. The degree of appreciation of a specific place is derived from the number of people taking and sharing pictures of it. The sequence of decisions and actions taken to share a digital picture of a given place includes the effort to travel to the place, the willingness to take a picture, the decision to geolocate the picture, and the action of sharing it through the Internet. Hence, the social activity of sharing pictures leaves digital proxies of spatial preferences, with people sharing specific photos considering the depicted place not only “worth visiting” but also “worth sharing visually.” Using South Wales as a case study, we demonstrate how the proposed methodology can help identify key geographic features of high cultural value. These results highlight how the inclusion of geographical user-generated content, also known as volunteered geographic information, can be very effective in addressing some of the current priorities in conservation. Indeed, the detection of the most appreciated nonurban areas could be used for better prioritization, planning, and management.
Resumo:
Understanding the dynamics of urban ecosystem services is a necessary requirement for adequate planning, management, and governance of urban green infrastructure. Through the three-year Urban Biodiversity and Ecosystem Services (URBES) research project, we conducted case study and comparative research on urban biodiversity and ecosystem services across seven cities in Europe and the United States. Reviewing > 50 peer-reviewed publications from the project, we present and discuss seven key insights that reflect cumulative findings from the project as well as the state-of-the-art knowledge in urban ecosystem services research. The insights from our review indicate that cross-sectoral, multiscale, interdisciplinary research is beginning to provide a solid scientific foundation for applying the ecosystem services framework in urban areas and land management. Our review offers a foundation for seeking novel, nature-based solutions to emerging urban challenges such as wicked environmental change issues.
Resumo:
An important aspect of sustainability is to maintain biodiversity and ecosystem functioning while improving human well-being. For this, the ecosystem service (ES) approach has the potential to bridge the still existing gap between ecological management and social development, especially by focusing on trade-offs and synergies between ES and between their beneficiaries. Several frameworks have been proposed to account for trade-offs and synergies between ES, and between ES and other components of social-ecological systems. However, to date, insufficient explicit attention has been paid to the three facets encompassed in the ES concept, namely potential supply, demand, and use, leading to incomplete descriptions of ES interactions. We expand on previous frameworks by proposing a new influence network framework (INF) based on an explicit consideration of influence relationships between these three ES facets, biodiversity, and external driving variables. We tested its ability to provide a comprehensive view of complex social-ecological interactions around ES through a consultative process focused on environmental management in the French Alps. We synthetized the interactions mentioned during this consultative process and grouped variables according to their overall propensity to influence or be influenced by the system. The resulting directed sequence of influences distinguished between: (1) mostly influential variables (dynamic social variables and ecological state variables), (2) target variables (provisioning and cultural services), and (3) mostly impacted variables (regulating services and biodiversity parameters). We discussed possible reasons for the discrepancies between actual and perceived influences and proposed options to overcome them. We demonstrated that the INF holds the potential to deliver collective assessments of ES relations by: (1) including ecological as well as social aspects, (2) providing opportunities for colearning processes between stakeholder groups, and (3) supporting communication about complex social-ecological systems and consequences for environmental management.
Resumo:
Structuring integrated social-ecological systems (SES) research remains a core challenge for achieving sustainability. Numerous concepts and frameworks exist, but there is a lack of mutual learning and orientation of knowledge between them. We focus on two approaches in particular: the ecosystem services concept and Elinor Ostrom’s diagnostic SES framework. We analyze the strengths and weaknesses of each and discuss their potential for mutual learning. We use knowledge types in sustainability research as a boundary object to compare the contributions of each approach. Sustainability research is conceptualized as a multi-step knowledge generation process that includes system, target, and transformative knowledge. A case study of the Southern California spiny lobster fishery is used to comparatively demonstrate how each approach contributes a different lens and knowledge when applied to the same case. We draw on this case example in our discussion to highlight potential interlinkages and areas for mutual learning. We intend for this analysis to facilitate a broader discussion that can further integrate SES research across its diverse communities.