904 resultados para Tridiagonal Kernel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regressiontechniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a nave random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists' long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies. © 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our study we rely on a data mining procedure known as support vector machine (SVM) on the database of the first Hungarian bankruptcy model. The models constructed are then contrasted with the results of earlier bankruptcy models with the use of classification accuracy and the area under the ROC curve. In using the SVM technique, in addition to conventional kernel functions, we also examine the possibilities of applying the ANOVA kernel function and take a detailed look at data preparation tasks recommended in using the SVM method (handling of outliers). The results of the models assembled suggest that a significant improvement of classification accuracy can be achieved on the database of the first Hungarian bankruptcy model when using the SVM method as opposed to neural networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown viruses quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, I investigate three related topics on asset pricing: the consumption-based asset pricing under long-run risks and fat tails, the pricing of VIX (CBOE Volatility Index) options and the market price of risk embedded in stock returns and stock options. These three topics are fully explored in Chapter II through IV. Chapter V summarizes the main conclusions. In Chapter II, I explore the effects of fat tails on the equilibrium implications of the long run risks model of asset pricing by introducing innovations with dampened power law to consumption and dividends growth processes. I estimate the structural parameters of the proposed model by maximum likelihood. I find that the stochastic volatility model with fat tails can, without resorting to high risk aversion, generate implied risk premium, expected risk free rate and their volatilities comparable to the magnitudes observed in data. In Chapter III, I examine the pricing performance of VIX option models. The contention that simpler-is-better is supported by the empirical evidence using actual VIX option market data. I find that no model has small pricing errors over the entire range of strike prices and times to expiration. In general, Whaley’s Black-like option model produces the best overall results, supporting the simpler-is-better contention. However, the Whaley model does under/overprice out-of-the-money call/put VIX options, which is contrary to the behavior of stock index option pricing models. In Chapter IV, I explore risk pricing through a model of time-changed Lvy processes based on the joint evidence from individual stock options and underlying stocks. I specify a pricing kernel that prices idiosyncratic and systematic risks. This approach to examining risk premia on stocks deviates from existing studies. The empirical results show that the market pays positive premia for idiosyncratic and market jump-diffusion risk, and idiosyncratic volatility risk. However, there is no consensus on the premium for market volatility risk. It can be positive or negative. The positive premium on idiosyncratic risk runs contrary to the implications of traditional capital asset pricing theory.