902 resultados para Treadmill running
Resumo:
A new reaction mode, i.e., the combined single-pass conversion of methane via oxidative coupling (OCM) over mixed metal oxide (SLC) catalysts and dehydroaromatization (MDA) over Mo/HZSM-5 catalysts, is reported. With the assistance of an OCM reaction over SLC catalysts in the top layer of the reactor, the deactivation resistance of Mo/HZSM-5 catalysts is remarkably enhanced. Under the selected reaction conditions, the CH(4) conversion decreased from similar to18 to similar to1% and the aromatics yield decreased from 12.8 to 0.1%, respectively, after running the reaction for 960 min on both 6Mo/HZSM-5 and SLC-6Mo/HZSM-5 catalyst system without O(2) in the feed. On the other hand, for the SLC-6Mo/HZSM-5 catalyst system with O(2) in the feed, the deactivation was improved greatly, and after 960 min onstream the CH(4) conversion and aromatics yield were still as high as 12.0 and 8.0%, respectively. The promotion effect mainly appears to be associated with in situ formation of CO(2) in the OCM layer, which reacts with coke via the reverse Boudouard reaction.
Resumo:
The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.