1000 resultados para Transport planes.
Resumo:
A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.
Resumo:
A series of dianhydride monomers, 2,2'-disubstituted-4,4',5,5'-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3',4,4'-biphenyttetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyintides. The effects of varying 2,2'-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2'-dinitro-BPDA and 2,2'-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N-2, O-2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (P-O2) and permselectivity of oxygen to nitrogen (PO2/N-2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively.
Resumo:
The effects of the concentration of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6, 78-i,j)quinolizin-11-one (C545T) as dopant in polyfluorene (PFO) on the charge-carrier transport and electroluminescence (EL) performance were investigated by steady-state and transient EL measurements. A fully green emission from C545T was observed and the EL performance depends strongly on the C545T concentration. The mobility in the C545T-doped PFO film was determined by transient EL. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the C545T molecules. The mobility in C545T:PFO changed significantly with the C545T concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.
Resumo:
The effects of doped fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) on the charge carrier injection, transport and electroluminescence (EL) performance in polyfluorene (PFO)-based polymer light-emitting diodes (PLEDs) were investigated by steady-state current-voltage (I-V) characteristics and transient EL measurements. A red EL from DCJTI was observed and the EL performance depended strongly on the DCJTI concentration. The analysis of the steady-state I-V characteristics at different DCJTI concentrations found that three regions was shown in the I-V characteristics, and each region was controlled by different processes depending on the applied electric field. The effect of the dopant concentration on the potential-barrier height of the interface is estimated using the Fowler-Nordheim model. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the DCJTI molecules. The mobility in DCJTI: PFO changed significantly with the DCJTI concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.
Resumo:
2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.
Resumo:
The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-quinolinolato) aluminum (Alq(3)) on the charge carrier transport in Alq(3):DCJTB was investigated by measuring the steady current-voltage characteristics and the transient electroluminescence. The dopant concentration dependence of the current-voltage relationship clearly indicates the carrier trapping by the DCJTB molecule. The DCJTB concentration significantly affects the electron mobility in Alq(3):DCJTB. The mobility has a nontrivial dependence on the doping level. For relatively low doping levels, less than 1%, the electron mobility of Alq(3):DCJTB decreases with the doping level. An increasing mobility is then observed if the dopant concentration is further increased, followed by a decrease for doping levels larger than similar to2%. The change of the electron mobility with the DCJTB concentration in Alq(3) is attributed to the additional energetic disorder due to potential fluctuations caused by the dipole-dipole interaction of random distribution dopant at the relatively low doping concentration, and to the phase separation at the high doping concentration.
Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport
Resumo:
Ambipolar organic field-effect transistors (OFETs) based on the organic heterojunction of copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were fabricated. The ambipolar OFETs eliminated the injection barrier for the electrons and holes though symmetrical Au source and drain electrodes were used, and exhibited air stability and balanced ambipolar transport behavior. High field-effect mobilities of 0.04 cm(2)/V s for the holes and 0.036 cm(2)/V s for the electrons were obtained. The capacitance-voltage characteristic of metal-oxide-semiconductor (MOS) diode confirmed that electrons and holes are transported at F16CuPc and BP2T layers, respectively. On this ground, complementary MOS-like inverters comprising two identical ambipolar OFETs were constructed.
Resumo:
Several factors can influence charge transport (CT)-mediated DNA, such as sequence, distance, base stacking, base pair mismatch, conformation, tether length, etc. However, the DNA context effect or how flanking sequences influence redox active drugs in the DNA CT reaction and later in DNA enzymatic repair and synthesis is still not well understood. The set of seven DNA molecules in this study have been characterized well for the study of flanking sequence effects. These DNA duplexes are formed from self-complementary strands and contain the common central four-base sequence 5'-A-G-C-T-3', flanked on both sides by either (AT)(n) or (AA)(n) (n = 2, 3, or 4) or AA(AT)(2). UV-vis, fluorescence, UV melting, circular dichroism, and cyclic voltammetry experiments were used to study the flanking sequence effect on CT-mediated DNA by using daunomycin or adriamycin cross-linked with these seven DNA molecules. Our results showed that charge transport was related to the flanking sequence, DNA melting free energy, and ionic strength. For (AA)(n) or (AT)(n) species of the same length, (AA)(n) series were more stable and more efficient CT was observed through the (AA)(n) series. The same trend was observed for (AA)(n) and (AT)(n) series at different ionic strengths, further supporting the idea that flanking sequence can result in different base stacking and modulate charge transport through these seven DNA molecules.
Phenylene vinylene-based electroluminescent polymers with electron transport block in the main chain
Resumo:
We report a new route for the design of soluble phenylene vinylene (PV) based electroluminescent polymers bearing electron-deficient oxadizole (OXD) and triazole (TZ) moieties in the main chains with the aryloxy linkage. Both series of the PV-based polymers were prepared by Wittig reaction. By properly adjusting the OXD and/or TZ content through copolymerization, we can achieve an enhanced balance of hole- and electron injections, such that the device efficiency is significantly improved. Light-emitting diodes fabricated from P1, P2, P3, P4, P5, P6, and P7 with the configuration of Indium-Tin Oxide (ITO)/Poly (styrene sulfonic acid) doped poly (ethylenedioxythiophene) (PEDOT)/polymer/Ca/Al, emit bright green light with the maximum peak around 500 nm. For the device using the optimal polymer (P4) as emitting layer, a maximum brightness of 1300 cd/m(2) at 20 V and a maximum luminance efficiency of 0.325 cd/A can be obtained.
Resumo:
We have investigated the current-voltage and electroluminescent (EL) characteristics of single-layer organic devices based on poly(9-vinylcarbazole) (PVK) and tris(8-hydroxyquinoline)aluminium (Alq(3)) blend with different PVK : Alq(3) concentrations. The experimental results from the observed thickness and temperature dependence clearly demonstrate that the current at low voltage is due to the holes injected at the anode and is space-charge limited, whereas the current at the high voltage that steeply increases is explained as the electron tunnelling injection at the cathode. The hole mobility is directly determined by space-charge-limited current at the low voltage region and decreases with increasing Alq(3) content in the blend. The EL efficiency shows concentration dependence, which is attributed to the change of the transport of electrons and holes in the blend film.
Resumo:
Gas transport of H-2, CO2, O-2, N-2, and CH4 in a series of cardo polyarylethers were examined over a temperature range of 30 similar to 100 degreesC. These polymers include three poly(aryletherketone)s, two poly(arylethersulfone)s, and one poly(aryletherketoneketone). It was found that the large length/diameter ratio of the polymer repeat unit for cardo polyaryletherketoneketone (PEKK-C) and strong intermolecular interaction in hydrogen-bonded polyarylethersulfone (PES-H) and hydrogen-bonded polyaryletherketone (PEK-H) resulted in a considerable increase in gas permselectivity. Alkyl-substituted polyaryletherketone (PEK-A), bearing a pendant bulky propyl group on the cardo ring, simultaneously exhibited 62.5% higher H-2 permeability and 59.8% higher H-2/N-2 permselectivity than unmodified poly(aryletherketone) (PEK-C). The causes of the trend were interpreted in terms of chain packing density, segmental motion ability, steric factor, and intermolecular interaction of polymers, together with gas kinetic diameter and critical temperature data.
Resumo:
Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.
Resumo:
The TiO2 nanoparticle thin films have been sensitized in situ with CdS nanoparticles. The SPS measurement showed that large surface state density was present on the TiO2 nanoparticles and the surface state can be efficiently decreased by sensitization as well as selecting suitable heat treatment, Both the photocurrent response and the charge recombination kinetics in TiO2 thin films were strongly influenced by trapping/detrapping of surface states. The slow photocurrent response of TiO2 nanoparticulate thin films upon the illumination was attributed to the trap saturation effects, The semiconductor sensitization made the slow photoresponse disappeared and the steady-state photocurrent value increased drastically, which suggested that the sensitization of TiO2 thin films with CdS could get a better charge separation and provide a simple alternative to minimize the effect of surface state on the photocurrent response.