910 resultados para Transgenetic algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant diseases represent a major economic and environmental problem in agriculture and forestry. Upon infection, a plant develops symptoms that affect different parts of the plant causing a significant agronomic impact. As many such diseases spread in time over the whole crop, a system for early disease detection can aid to mitigate the losses produced by the plant diseases and can further prevent their spread [1]. In recent years, several mathematical algorithms of search have been proposed [2,3] that could be used as a non-invasive, fast, reliable and cost-effective methods to localize in space infectious focus by detecting changes in the profile of volatile organic compounds. Tracking scents and locating odor sources is a major challenge in robotics, on one hand because odour plumes consists of non-uniform intermittent odour patches dispersed by the wind and on the other hand because of the lack of precise and reliable odour sensors. Notwithstanding, we have develop a simple robotic platform to study the robustness and effectiveness of different search algorithms [4], with respect to specific problems to be found in their further application in agriculture, namely errors committed in the motion and sensing and to the existence of spatial constraints due to land topology or the presence of obstacles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel ?vertical? chains are led by random-walk proposals, whereas the ?horizontal? MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithms (GA) have been used for the minimization of the aerodynamic drag of a train subject to front wind. The significant importance of the external aerodynamic drag on the total resistance a train experiments as the cruise speed is increased highlights the interest of this study. A complete description of the methodology required for this optimization method is introduced here, where the parameterization of the geometry to be optimized and the metamodel used to speed up the optimization process are detailed. A reduction of about a 25% of the initial aerodynamic drag is obtained in this study, what confirms GA as a proper method for this optimization problem. The evolution of the nose shape is consistent with the literature. The advantage of using metamodels is stressed thanks to the information of the whole design space extracted from it. The influence of each design variable on the objective function is analyzed by means of an ANOVA test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, devices that monitor the health of structures consume a lot of power and need a lot of time to acquire, process, and send the information about the structure to the main processing unit. To decrease this time, fast electronic devices are starting to be used to accelerate this processing. In this paper some hardware algorithms implemented in an electronic logic programming device are described. The goal of this implementation is accelerate the process and diminish the information that has to be send. By reaching this goal, the time the processor needs for treating all the information is reduced and so the power consumption is reduced too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uno de los defectos más frecuentes en los generadores síncronos son los defectos a tierra tanto en el devanado estatórico, como de excitación. Se produce un defecto cuando el aislamiento eléctrico entre las partes activas de cualquiera de estos devanados y tierra se reduce considerablemente o desaparece. La detección de los defectos a tierra en ambos devanados es un tema ampliamente estudiado a nivel industrial. Tras la detección y confirmación de la existencia del defecto, dicha falta debe ser localizada a lo largo del devanado para su reparación, para lo que habitualmente el rotor debe ser extraído del estator. Esta operación resulta especialmente compleja y cara. Además, el hecho de limitar la corriente de defecto en ambos devanados provoca que el defecto no sea localizable visualmente, pues apenas existe daño en el generador. Por ello, se deben aplicar técnicas muy laboriosas para localizar exactamente el defecto y poder así reparar el devanado. De cara a reducir el tiempo de reparación, y con ello el tiempo en que el generador esta fuera de servicio, cualquier información por parte del relé de protección acerca de la localización del defecto resultaría de gran utilidad. El principal objetivo de esta tesis doctoral ha sido el desarrollo de nuevos algoritmos que permitan la estimación de la localización de los defectos a tierra tanto en el devanado rotórico como estatórico de máquinas síncronas. Respecto al devanado de excitación, se ha presentado un nuevo método de localización de defectos a tierra para generadores con excitación estática. Este método permite incluso distinguir si el defecto se ha producido en el devanado de excitación, o en cualquiera de los componentes del sistema de excitación, esto es, transformador de excitación, conductores de alimentación del rectificador controlado, etc. En caso de defecto a tierra en del devanado rotórico, este método proporciona una estimación de su localización. Sin embargo, para poder obtener la localización del defecto, se precisa conocer el valor de resistencia de defecto. Por ello, en este trabajo se presenta además un nuevo método para la estimación de este parámetro de forma precisa. Finalmente, se presenta un nuevo método de detección de defectos a tierra, basado en el criterio direccional, que complementa el método de localización, permitiendo tener en cuenta la influencia de las capacidades a tierra del sistema. Estas capacidades resultan determinantes a la hora de localizar el defecto de forma adecuada. En relación con el devanado estatórico, en esta tesis doctoral se presenta un nuevo algoritmo de localización de defectos a tierra para generadores que dispongan de la protección de faltas a tierra basada en la inyección de baja frecuencia. Se ha propuesto un método general, que tiene en cuenta todos los parámetros del sistema, así como una versión simplificada del método para generadores con capacidades a tierra muy reducida, que podría resultar de fácil implementación en relés de protección comercial. Los algoritmos y métodos presentados se han validado mediante ensayos experimentales en un generador de laboratorio de 5 kVA, así como en un generador comercial de 106 MVA con resultados satisfactorios y prometedores. ABSTRACT One of the most common faults in synchronous generators is the ground fault in both the stator winding and the excitation winding. In case of fault, the insulation level between the active part of any of these windings and ground lowers considerably, or even disappears. The detection of ground faults in both windings is a very researched topic. The fault current is typically limited intentionally to a reduced level. This allows to detect easily the ground faults, and therefore to avoid damage in the generator. After the detection and confirmation of the existence of a ground fault, it should be located along the winding in order to repair of the machine. Then, the rotor has to be extracted, which is a very complex and expensive operation. Moreover, the fact of limiting the fault current makes that the insulation failure is not visually detectable, because there is no visible damage in the generator. Therefore, some laborious techniques have to apply to locate accurately the fault. In order to reduce the repair time, and therefore the time that the generator is out of service, any information about the approximate location of the fault would be very useful. The main objective of this doctoral thesis has been the development of new algorithms and methods to estimate the location of ground faults in the stator and in the rotor winding of synchronous generators. Regarding the excitation winding, a new location method of ground faults in excitation winding of synchronous machines with static excitation has been presented. This method allows even to detect if the fault is at the excitation winding, or in any other component of the excitation system: controlled rectifier, excitation transformer, etc. In case of ground fault in the rotor winding, this method provides an estimation of the fault location. However, in order to calculate the location, the value of fault resistance is necessary. Therefore, a new fault-resistance estimation algorithm is presented in this text. Finally, a new fault detection algorithm based on directional criterion is described to complement the fault location method. This algorithm takes into account the influence of the capacitance-to-ground of the system, which has a remarkable impact in the accuracy of the fault location. Regarding the stator winding, a new fault-location algorithm has been presented for stator winding of synchronous generators. This algorithm is applicable to generators with ground-fault protection based in low-frequency injection. A general algorithm, which takes every parameter of the system into account, has been presented. Moreover, a simplified version of the algorithm has been proposed for generators with especially low value of capacitance to ground. This simplified algorithm might be easily implementable in protective relays. The proposed methods and algorithms have been tested in a 5 kVA laboratory generator, as well as in a 106 MVA synchronous generator with satisfactory and promising results.