916 resultados para Toxicity Effluent
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Chlorohydrins of stearoyl-oleoyl phosphatidylcholine (SOPC), stearoyl-linoleoyl phosphatidylcholine, and stearoyl-arachidonyl phosphatidylcholine were incubated with cultured myeloid cells (111,60) for 24 h, and the cellular ATP level was measured using a bioluminescent assay. The chlorohydrins caused significant depletion of cellular ATP in the range 10100 muM. The ATP depletion by the phospholipid chlorohydrins was slightly less than that of 4-hydroxy-2-nonenal, but greater than that of hexanal, trans-2-nonenal, and autoxidised palmitoyl-arachidonoyl phosphatidylcholine. SOPC chlorohydrin was also found to cause loss of viability in U937 cells, and thus phospholipid chlorohydrins could contribute to the formation of a necrotic core in advanced atherosclerotic lesions.
Resumo:
Focal points: ICD-10 codings and spontaneous yellow card reports for warfarin toxicity were compared retrospectively over a one-year period Eighteen cases of ICD-10 coded warfarin toxicity were identified from a total of 55,811 coded episodes More than three times as many ADRs to warfarin were found by screening ICD-10 codes as were reported spontaneously using the yellow card scheme Valuable information is being lost to regulatory authorities and as recognised reporters to the yellow card scheme, pharmacists are well placed to report these ADRs, enhancing their role in the safe and appropriate prescribing of warfarin
Resumo:
Three human astroglioma lines U251-MG, U373-MG and CCF-STTG1 have been evaluated further as possible models for astrocytotoxicity (GFAP and IL-6 release). The effects of bacterial lipopolysaccharide, chloroquine diphosphate and acrylamide were studied on GFAP expression and LPS, chloroquine diphosphate, ethanol, trimethyltin chloride (TMTC) and acrylamide were examined on interleukin-6 (IL-6) release in the U373-MG line only. At 4-h LIPS elevated GFAP (17.0±5.0% P < 0.05) above control in the U251-MG cell line only. Chloroquine diphosphate over 4 h in the U251-MG line resulted in an increase in GFAP-IR to 20.3 ±4.2% and 21.1 ± 4.1 % above control levels 0.1 µM (P< 0.05) and 1 µM (P< 0.05) respectively. CQD was associated with decreases in MTT turnover, particularly after 24 h incubation. With the U373-MG line, LPS (0.5 µg/ml) increased IL-6 expression 640% above control (P < 0.001), whilst chloroquine diphosphate (100 µM), ethanol (10mM) and TMTC chloride (1 µM) also increased IL-6. It is possible that batteries of astrocytic human glioma cell lines may be applicable to the sensitive evaluation of toxicants on astrogliotic expression markers such as GFAP and IL-6.
Resumo:
The effects of the antioxidant lipoic acid and its reduced form, dihydrolipoic acid (DHLA), were studied on the process of the erythrocytic toxicity of 4-aminophenol in human erythrocytes in vitro. 4-Aminophenol alone caused a stepwise increase in methaemoglobin formation, along with a commensurate decrease in total thiols. At 10 min., in the presence of lipoic acid alone and the thiol depletor 1-chloro-2,4-dinitrobenzene (CDNB) alone, 4-aminophenol-mediated methaemoglobin formation was significantly increased, whilst thiol levels were significantly reduced compared with the 4-aminophenol alone. At 10 min., with DHLA and CDNB alone, 4-aminophenol was associated with significantly increased methaemoglobin formation. However, thiol levels were not significantly different in the presence of DHLA compared with 4-aminophenol alone, although thiol levels were different compared with control (4-aminophenol alone) in the incubations with CDNB alone. At 15 min., only CDNB/4-aminophenol methaemoglobin formation differed from control, whilst thiol levels were significantly lower in the presence of CDNB alone compared with 4-aminophenol alone. Lipoic acid enhanced the toxicity of 4-aminophenol in terms of increased methaemoglobin formation coupled with increased thiol depletion, whilst DHLA showed increased 4-aminophenol-mediated methaemoglobin formation without thiol depletion. Lipoic acid, and to a lesser extent its reduced derivative DHLA, acted as a prooxidant in the presence of 4-aminophenol, enhancing the oxidative stress effects of the amine in human erythrocytes. © Basic & Clinical Pharmacology & Toxicology 2006.
Resumo:
The metabolite 2,5-hexanedione (HD) is the cause of neurotoxicity linked with chronic n-hexane exposure. Acute exposure to high levels of 2,5-HD, have also shown toxic effects in neuronal cells and non-neuronal cells. Isomers of 2,5-HD, 2,3- and 3,4-HD, added to foodstuffs, are reported to be non-toxic. The acute cytotoxic effects of 2,5-, 2,3- and 3,4-HD were evaluated in neural (NT2.N, SK-N-SH), astrocytic (CCF-STTG1) and non-neural (NT2.D1) cell lines. All the cell lines were highly resistant to 2,5-HD (34-426 mM) at 4-h exposure, although sensitivity was greatest with NT2.D1, then SK-N-SH, NT2.N and finally the CCF-STTG1 line. At 24-h exposure, cell vulnerability increased 5-10-fold. The NT2.D1 cells were again the most sensitive, followed by NT2.N, SK-N-SH and then the CCF-STTG1 cells. 2,3- and 3,4-HD (8-84 mM), were significantly more toxic towards all four cell lines compared with 2,5-HD, after 4-h exposure. After 24-h exposure there was a 12-fold increase in inhibition of MTT turnover in the SK-N-SH cells and a 4-fold increase in the CCF-STTG1 cells, compared with 2,5-HD exposure. 2,3- and 3,4-HD, were significantly less toxic to the NT2.N cells than the SK-N-SH cells after 24-h exposure to the compounds, demonstrating a differing toxin vulnerability between these neural and neuroblastoma cell lines. This study indicates that these non-neuronal and neuronal cells are acutely resistant to 2,5-HD cytotoxicity, whilst the previously unreported sensitivity of all four cell lines to the 2,3- and 3,4- isomers of HD to has been shown to be significantly greater than that of 2,5-HD. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.
Resumo:
Chromium (Cr) is a metal of particular environmental concern, owing to its toxicity and widespread occurrence in groundwater, soil, and soil solution. A combination of hydrological, geochemical, and microbiological processes governs the subsurface migration of Cr. Little effort has been devoted to examining how these biogeochemical reactions combine with hydrologic processes influence Cr migration. This study has focused on the complex problem of predicting the Cr transport in laboratory column experiments. A 1-D reactive transport model was developed and evaluated against data obtained from laboratory column experiments. ^ A series of dynamic laboratory column experiments were conducted under abiotic and biotic conditions. Cr(III) was injected into columns packed with β-MnO 2-coated sand at different initial concentrations, variable flow rates, and at two different pore water pH (3.0 and 4.0). In biotic anaerobic column experiments Cr(VI) along with lactate was injected into columns packed with quartz sand or β-MnO2-coated sand and bacteria, Shewanella alga Simidu (BrY-MT). A mathematical model was developed which included advection-dispersion equations for the movement of Cr(III), Cr(VI), dissolved oxygen, lactate, and biomass. The model included first-order rate laws governing the adsorption of each Cr species and lactate. The equations for transport and adsorption were coupled with nonlinear equations for rate-limited oxidation-reduction reactions along with dual-monod kinetic equations. Kinetic batch experiments were conducted to determine the reduction of Cr(VI) by BrY-MT in three different substrates. Results of the column experiments with Cr(III)-containing influent solutions demonstrate that β-MnO2 effectively catalyzes the oxidation of Cr(III) to Cr(VI). For a given influent concentration and pore water velocity, oxidation rates are higher, and hence effluent concentrations of Cr(VI) are greater, at pH 4 relative to pH 3. Reduction of Cr(VI) by BrY-MT was rapid (within one hour) in columns packed with quartz sand, whereas Cr(VI) reduction by BrY-MT was delayed (57 hours) in presence of β-MnO 2-coated sand. BrY-MT grown in BHIB (brain heart infusion broth) reduced maximum amount of Cr(VI) to Cr(III) followed by TSB (tryptic soy broth) and M9 (minimum media). The comparisons of data and model results from the column experiments show that the depths associated with Cr(III) oxidation and transport within sediments of shallow aquatic systems can strongly influence trends in surface water quality. The results of this study suggests that carefully performed, laboratory column experiments is a useful tool in determining the biotransformation of redox-sensitive metals even in the presence of strong oxidant, like β-MnO2. ^
Resumo:
Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^
Resumo:
Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^
Resumo:
The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.^
Resumo:
The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.
Resumo:
Oil exploration is one of the most important industrial activities of modern society. Despite its derivatives present numerous applications in industrial processes, there are many undesirable by-products during this process, one of them is water separated from oil, called water production, it is constituted by pollutants difficult to degrade. In addition, the high volume of generated water makes its treatment a major problem for oil industries. Among the major contaminants of such effluents are phenol and its derivatives, substances of difficult natural degradation, which due their toxicity must be removed by a treatment process before its final disposal. In order to facilitate the removal of phenol in wastedwater from oil industry, it was developed an extraction system by ionic flocculation with surfactant. The ionic flocculation relies on the reaction of carboxylate surfactant and calcium íons, yielding in an insoluble surfactant that under stirring, aggregates forming floc capable of attracting the organic matter by adsorption. In this work was used base soap as ionic surfactant in the flocculation process and evaluated phenol removal efficiency in relation to the following parameters: surfactant concentration, phenol, calcium and electrolytes, stirring speed, contact time, temperature and pH. The flocculation of the surfactant occurred in the effluent (initial phenol concentration = 100 ppm) reaching 65% of phenol removal to concentrations of 1300 ppm and calcium of 1000 ppm, respectively, at T = 35 °C, pH = 9.7, stirring rate = 100 rpm and contact time of 5 minutes. The permanence of the flocs in an aqueous medium promotes desorption of the phenol from the flake surface to the solution, reaching 90% of desorption at a time of 150 minutes, and the study of desorption kinetics showed that Lagergren model of pseudo-first order was adequate to describe the phenol desorption. These results shows that the process may configure a new alternative of treatment in regard the removal of phenol of aqueous effluent of oil industry.
Resumo:
Oil exploration is one of the most important industrial activities of modern society. Despite its derivatives present numerous applications in industrial processes, there are many undesirable by-products during this process, one of them is water separated from oil, called water production, it is constituted by pollutants difficult to degrade. In addition, the high volume of generated water makes its treatment a major problem for oil industries. Among the major contaminants of such effluents are phenol and its derivatives, substances of difficult natural degradation, which due their toxicity must be removed by a treatment process before its final disposal. In order to facilitate the removal of phenol in wastedwater from oil industry, it was developed an extraction system by ionic flocculation with surfactant. The ionic flocculation relies on the reaction of carboxylate surfactant and calcium íons, yielding in an insoluble surfactant that under stirring, aggregates forming floc capable of attracting the organic matter by adsorption. In this work was used base soap as ionic surfactant in the flocculation process and evaluated phenol removal efficiency in relation to the following parameters: surfactant concentration, phenol, calcium and electrolytes, stirring speed, contact time, temperature and pH. The flocculation of the surfactant occurred in the effluent (initial phenol concentration = 100 ppm) reaching 65% of phenol removal to concentrations of 1300 ppm and calcium of 1000 ppm, respectively, at T = 35 °C, pH = 9.7, stirring rate = 100 rpm and contact time of 5 minutes. The permanence of the flocs in an aqueous medium promotes desorption of the phenol from the flake surface to the solution, reaching 90% of desorption at a time of 150 minutes, and the study of desorption kinetics showed that Lagergren model of pseudo-first order was adequate to describe the phenol desorption. These results shows that the process may configure a new alternative of treatment in regard the removal of phenol of aqueous effluent of oil industry.
Resumo:
Lo scopo della presente tesi è l’analisi della tossicità di nanoparticelle di ossido di zinco (nano-ZnO) verso gli organismi acquatici. In particolare, il presente studio valuta per la prima volta l'inibizione della crescita della diatomea Thalassiosira pseudonana indotta sia da nanoparticelle di dervazione industriale, che da nanoparticelle auto-estratte in laboratorio da un filtro solare. Gli esperimenti, condotti presso il Laboratorio di Ingegneria dell'Università di Miami, hanno mostrato che la tossicità indotta dalle nanoparticelle di ossido di zinco è influenzata dal tipo di nanoparticelle, nonché dalla loro concentrazione nella soluzione acquosa e dal tempo di esposizione. In particolare le nanoparticelle di derivazione industriale, più piccole rispetto alle nanoparticelle estratte dal filtro solare, hanno indotto un’inibizione della crescita superiore, specialmente a concentrazioni inferiori. Questo andamento suggerisce che ad alte concentrazioni la tossicità di nano-ZnO potrebbe essere influenzata dall’aggregazione di nanoparticelle (indipendentemente dalle dimensioni di partenza delle nanoparticelle), mentre a concentrazioni inferiori la tossicità potrebbe essere influenzata dalle dimensioni di partenza delle nanoparticelle, così come dal tipo di nanoparticelle e dal tempo di esposizione.