983 resultados para Tissue Concentrations
Resumo:
Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.
Resumo:
Successful implantation is still the limiting step in IVF. We hypothesized that maternal plasma concentrations of certain cytokines at the time of embryo transfer could predict the likelihood of successful implantation and pregnancy. sIL-2R, IL-6, LIF, and MMP2 concentrations were measured in plasma from 160 IVF patients (natural and stimulated IVF cycles) on the morning of the embryo transfer (ET0) and 14days later (ET+14). Patients were ultimately subdivided into four groups depending on the IVF treatment outcome (pregnancy failure, biochemical pregnancy, first-trimester miscarriage and normal term delivery). In natural and stimulated IVF cycles at ET0, sIL-2R concentrations were threefold higher in biochemical pregnancies than in pregnancy failures (P=0.020), and in natural cycles only, 2.5-fold higher in normal term deliveries than in pregnancy failures (P=0.023). Conversely, in natural and stimulated IVF cycles at ET0, LIF concentrations were one third lower in biochemical pregnancies/first-trimester miscarriages compared with pregnancy failures (P=0.042). We suggest that high sIL-2R and low LIF concentrations in maternal plasma on the morning of the embryo transfer might be associated with increased risks of early pregnancy loss, while a basal level of sIL-2R is necessary for normal term delivery outcome. Both cytokine measurements might therefore be useful in the management of IVF patients, and modulation of their concentrations could be investigated as a therapeutic alternative for women with abnormal concentrations at the time of embryo transfer.
Resumo:
Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
Resumo:
Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.
Resumo:
A genetic polymorphism of cytochrome P450 2D6 has been described with the existence of poor (zero functional genes), extensive (one or two functional genes), and ultrarapid metabolizers (three or more functional genes). The authors measured the steady-state trough (R)- (i.e., the active enantiomer), (S)-, and (R,S)-methadone plasma levels in opiate-dependent patients receiving methadone maintenance treatment (MMT) and genotyped them for cytochrome P4502D6. The patients' medical records were reviewed to assess the outcome of the MMT with regard to the absence of illicit opiate consumption and to the absence of withdrawal complaints in ultrarapid and poor metabolizers. Of 256 patients included, 18 were found to be poor metabolizers, 228 to be extensive metabolizers, and 10 to be ultrarapid metabolizers. Significant differences were found between genotypes for (R)- (p = 0.024), (S)- (p = 0.033), and (R,S)-methadone (p = 0.026) concentrations to dose-to-weight ratios. For (R)-methadone, a significant difference was found between ultrarapid metabolizers and poor metabolizers (p = 0.009), with the median value in the former group being only 54% of the median value in the latter group. These results confirm the involvement of cytochrome P450 2D6 in methadone metabolism. Although the difference was nonsignificant (p = 0.103), 13 (72%) of the 18 poor metabolizers and only 4 (40%) of the 10 ultrarapid metabolizers were considered successful in their treatment. More studies are needed to examine the influence of the ultrarapid metabolizer status on the outcome of the MMT.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion.
Resumo:
Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD). In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system) or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.
Resumo:
AIM: The specific natural history of superficial soft tissue sarcomas (S-STS) has been rarely considered. We describe the clinical characteristics of a large series of S-STS (N=367) from the French Sarcoma Group (GSF-GETO) database and analyse the prognostic factors affecting outcome. METHODS: We performed univariate and multivariate analyses for overall survival (OS), metastasis-free survival (MFS) and local recurrence-free survival (LRFS). RESULTS: The median age was 59 years. Fifty-eight percent patients were female. Tumour locations were as follows: extremities, 55%; trunk wall, 35.4%; head and neck, 8% and unknown, 1.6%. Median tumour size was 3.0 cm. The most frequent tumour types were unclassified sarcoma (24.3%) and leiomyosarcoma (22.3%). Thirty-three percent of cases were grade 3. Median follow-up was 6.18 years. The 5-year OS, MFS and LRFS rates were 80.9%, 80.7% and 74.7%, respectively. Multivariate analysis retained histological type and wide resection for predicting LRFS and histological type and grade as prognostic factors of MFS. The factors influencing OS were age, histological type, grade and wide resection. STS with early invasion into but not through the underlying fascia had a significantly poorer MFS than with strict S-STS. CONCLUSION: S-STS represent a separate category characterised by a better outcome. Adequate surgery, i.e. wide resection, is essential in the management of S-STS.
Resumo:
Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate to strain-specific differences, or to the different durations of dosing in each of the mouse studies, given the evidence that inorganic arsenic is likely to be active in the later stages of the carcinogenic process. [Authors]
Resumo:
Rapport de synthèse : Introduction : La perfusion isolée de membre (isolated limb perfusion, ou ILP) par TNF-alpha et melphalan, utilisés en association, est une stratégie de prise en charge chirurgicale des sarcomes non opérables des extrémités. Elle a été en partie développée au CHUV dans les années 1990, sous l'impulsion du Professeur F. Lejeune, ancien Chef du Service d'oncologie médicale (CePO). Les résultats des 31 premiers patients ont été publiés en 2000 dans l'European Journal of Surgical Oncology. Les données dans la littérature manquant sur les résultats à long terme, nous avons revu tous les patients traités au CHUV depuis 1992 pour tenter des de déterminer ces résultats à long terme, en se focalisant sur l'efficacité du traitement, symbolisée par le taux de sauvetage de membres, autrement condamnés à l'amputation ou à une chirurgie mutilante. Matériel et méthode : Etude rétrospective. De 1992 à mars 2006, 51 patients ont été traités par ILP dans notre institution, certains à deux reprises (58 ILP au total). Quatre-vingt-huit pour cent présentaient un sarcome de haut grade de malignité, et 84% une tumeur localement avancée (T2b NO Mo ou plus). Résultats : Le follow-up moyen est de 38.9 mois (4-159, médiane 22 mois), on note 21 % de complications immédiates et 23% de complications tardives ou chroniques. Une réponse complète (nécrose totale ou disparition de la tumeur) a été observée dans 25% des cas, une réponse partielle (>50% de nécrose ou de diminution de taille tumorale) dans 42%, une stabilité de la maladie dans 14% et une progression tumorale dans 14%. Un traitement adjuvant a été entrepris dans 31 % des cas, une résection des résidus tumoraux a pu être effectuée chez 65% des patients. On note un taux de récidive locale de 35% (après 20,3 mois en moyenne) et un taux de récidive à distance de 45% (après 13,4 mois en moyenne). Le disease-free survival est de 14,9 mois et la survie à 5 ans de 43,5%. Le taux d'amputation s'élève à 24%. Conclusion : La perfusion isolée de membre est un traitement grevé d'un taux élevé de complications, mais il peut étre entrepris dans les sarcomes les plus sévères avec un succès significatif. Ainsi, dans notre série, une chirurgie mutilante (en général l'amputation) a pu être épargnée à 76% des patients.