966 resultados para Tiopurina metil transferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was previously assumed that the import of cytoplasmically synthesized precursor proteins into mitochondria occurs through a single structure spanning both outer and inner membranes at contact sites. Based on recent findings, however, the two membranes appear to contain independent translocation elements that reversibly cooperate during protein import. This feature makes it difficult to generate a means of isolating a fully integrated and functional translocation complex. To study these independent translocases in vitro and in vivo, we have constructed a chimeric protein consisting of an N-terminal authentic mitochondrial precursor (delta1-pyrroline-5-carboxylate dehydrogenase) linked, through glutathione S-transferase, to IgG binding domains derived from staphylococcal protein A. This construct becomes trapped en route to the matrix, spanning both outer and inner membranes in such a way that the entire signal-less delta1-pyrroline-5-carboxylate dehydrogenase moiety reaches the matrix, while only the folded protein A domain remains outside. During in vivo import of this precursor, outer and inner membranes of yeast mitochondria become progressively “zippered” together, forming long stretches of close contact. Using this novel intermediate, the outer and inner mitochondrial membrane channels, which normally interact only transiently, can be tightly joined (both in vitro and in vivo), forming a stable association. This suggests a method for isolating the functional translocation complex as a single entity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tissues as a single-chain protein distributed throughout the cytoplasm and nucleus. Studies with a glutathione S-transferase-HAH1 fusion protein demonstrated direct protein–protein interaction between HAH1 and the Wilson disease protein, which required the cysteine copper ligands in the amino terminus of HAH1. Consistent with these in vitro observations, coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson and Menkes proteins in vivo and that this interaction depends on available copper. When these studies were repeated utilizing three disease-associated mutations in the amino terminus of the Wilson protein, a marked diminution in HAH1 interaction was observed, suggesting that impaired copper delivery by HAH1 constitutes the molecular basis of Wilson disease in patients harboring these mutations. Taken together, these data provide a mechanism for the function of HAH1 as a copper chaperone in mammalian cells and demonstrate that this protein is essential for copper homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5′-Capping is an early mRNA modification that has important consequences for downstream events in gene expression. We have isolated mammalian cDNAs encoding capping enzyme. They contain the sequence motifs characteristic of the nucleotidyl transferase superfamily. The predicted mouse and human enzymes consist of 597 amino acids and are 95% identical. Mouse cDNA directed synthesis of a guanylylated 68-kDa polypeptide that also contained RNA 5′-triphosphatase activity and catalyzed formation of RNA 5′-terminal GpppG. A haploid strain of Saccharomyces cerevisiae lacking mRNA guanylyltransferase was complemented for growth by the mouse cDNA. Conversion of Lys-294 in the KXDG-conserved motif eliminated both guanylylation and complementation, identifying it as the active site. The K294A mutant retained RNA 5′-triphosphatase activity, which was eliminated by N-terminal truncation. Full-length capping enzyme and an active C-terminal fragment bound to the elongating form and not to the initiating form of polymerase. The results document functional conservation of eukaryotic mRNA guanylyltransferases from yeast to mammals and indicate that the phosphorylated C-terminal domain of RNA polymerase II couples capping to transcription elongation. These results also explain the selective capping of RNA polymerase II transcripts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human type VII collagen gene (COL7A1) recently has been identified as an immediate-early response gene for transforming growth factor β (TGF-β)/SMAD signaling pathway. In this study, by using MDA-MB-468 SMAD4−/− breast carcinoma cells, we demonstrate that expression of SMAD4 is an absolute requirement for SMAD-mediated promoter activity. We also demonstrate that the SMAD binding sequence (SBS) representing the TGF-β response element in the region −496/−444 of the COL7A1 promoter functions as an enhancer in the context of a heterologous promoter. Electrophoretic mobility-shift assays with nuclear extracts from COS-1 cells transfected with expression vectors for SMADs 1–5 indicate that SMAD3 forms a complex with a migration similar to that of the endogenous TGF-β-specific complex observed in fibroblast extracts. Electrophoretic mobility-shift assays using recombinant glutathione S-transferase-SMAD fusion proteins indicate that both SMAD4 and C-terminally truncated SMAD3, but not SMAD2, can bind the COL7A1 SBS. Coexpression of SMAD3 and SMAD4 in COS-1 cells leads to the formation of two complexes: a DNA/protein complex containing SMAD3 alone and another slower-migrating complex containing both SMAD3 and SMAD4, the latter complex not being detected in fibroblasts. Maximal transactivation of COL7A1 SBS-driven promoters in either MDA-MB-468 carcinoma cells or fibroblasts requires concomitant overexpression of SMAD3 and SMAD4. These data may represent the first identification of a functional homomeric SMAD3 complex regulating a human gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The signaling pathways that allow plants to mount defenses against chewing insects are known to be complex. To investigate the role of jasmonate in wound signaling in Arabidopsis and to test whether parallel or redundant pathways exist for insect defense, we have studied a mutant (fad3–2 fad7–2 fad8) that is deficient in the jasmonate precursor linolenic acid. Mutant plants contained negligible levels of jasmonate and showed extremely high mortality (≈80%) from attack by larvae of a common saprophagous fungal gnat, Bradysia impatiens (Diptera: Sciaridae), even though neighboring wild-type plants were largely unaffected. Application of exogenous methyl jasmonate substantially protected the mutant plants and reduced mortality to ≈12%. These experiments precisely define the role of jasmonate as being essential for the induction of biologically effective defense in this plant–insect interaction. The transcripts of three wound-responsive genes were shown not to be induced by wounding of mutant plants but the same transcripts could be induced by application of methyl jasmonate. By contrast, measurements of transcript levels for a gene encoding glutathione S-transferase demonstrated that wound induction of this gene is independent of jasmonate synthesis. These results indicate that the mutant will be a good genetic model for testing the practical effectiveness of candidate defense genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca2+ stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca2+-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca2+ entry and to test for a role of their respective binding partners in Ca2+ entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca2+ entry. In contrast, F2g enhanced the two forms of Ca2+ entry. We conclude that store depletion-activated Ca2+ entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca2+ from stores and activating Ca2+ influx in response to either increasing IP3 or decreasing luminal Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isoprenoid pathway in FRTL-5 thyroid cells was found to be deeply altered on transformation with v-K-ras. A dramatic overall reduction of protein prenylation was found in v-K-ras-transformed cells in comparison with the parent FRTL-5 cells, as shown by labeling cells with [3H]mevalonic acid. This phenomenon was accompanied by a relative increase of p21ras farnesylation and by a decrease of the ratio between the amounts of geranylgeraniol and farnesol bound to prenylated proteins. Analysis of protein prenylation in FRTL-5 cells transformed by a temperature-sensitive mutant of the v-K-ras oncogene indicated that these variations represent an early and specific marker of active K-ras. Conversely, FRTL-5 cells transformed with Harvey-ras showed a pattern of [3H]-mevalonate (MVA)-labeled proteins similar to that of nontransformed cells. The K-ras oncogene activation also resulted in an overall decrease of [3H]-MVA incorporation into isopentenyl-tRNA together with an increase of unprocessed [3H]-MVA and no alteration in [3H]-MVA uptake. The effects of v-K-ras on protein prenylation could be mimicked in FRTL-5 cells by lowering the concentration of exogenous [3H]-MVA whereas increasing the [3H]-MVA concentration did not revert the alterations observed in transformed cells. Accordingly, v-K-ras expression was found to: (i) down-regulate mevalonate kinase; (ii) induce farnesyl-pyrophosphate synthase expression; and (iii) augment protein farnesyltransferase but not protein geranylgeranyl-transferase-I activity. Among these events, mevalonate kinase down-regulation appeared to be related strictly to differential protein prenylation. This study represents an example of how expression of the v-K-ras oncogene, through multiple interferences with the isoprenoid metabolic pathway, may result in the preferential farnesylation of the ras oncogene product p21ras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n ≥ 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified α-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have reported previously that the hepatitis B virus oncoprotein, HBx, can bind to the C terminus of p53 and inhibit several critical p53-mediated cellular processes, including DNA sequence-specific binding, transcriptional transactivation, and apoptosis. Recognizing the importance of p53-mediated apoptosis for maintaining homeostasis and preventing neoplastic transformation, here we further examine the physical interaction between HBx and p53 as well as the functional consequences of this association. In vitro binding studies indicate that the ayw and adr viral subtypes of HBx bind similar amounts of glutathione S-transferase-p53 with the distal C terminus of HBx (from residues 111 to 154) being critical for this interaction. Using a microinjection technique, we show that this same C-terminal region of HBx is necessary for sequestering p53 in the cytoplasm and abrogating p53-mediated apoptosis. The transcriptional transactivation domain of HBx also maps to its C terminus; however, a comparison of the ability of full-length and truncated HBx protein to abrogate p53-induced apoptosis versus transactivate simian virus 40- or human nitric oxide synthase-2 promoter-driven reporter constructs indicates that these two functional properties are distinct and thus may contribute to hepatocarcinogenesis differently. Collectively, our data indicate that the distal C-terminal domain of HBx, independent of its transactivation activity, complexes with p53 in the cytoplasm, partially preventing its nuclear entry and ability to induce apoptosis. These pathobiological effects of HBx may contribute to the early stages of hepatocellular carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-mannosylation of Trp-7 in human ribonuclease 2 (RNase 2) is a novel kind of protein glycosylation that differs fundamentally from N- and O-glycosylation in the protein-sugar linkage. Previously, we established that the specificity determinant of the acceptor substrate (RNase 2) consists of the sequence W-x-x-W, where the first Trp becomes C-mannosylated. Here we investigated the reaction with respect to the mannosyl donor and the involvement of a glycosyltransferase. C-mannosylation of Trp-7 was reduced 10-fold in CHO (Chinese hamster ovary) Lec15 cells, which are deficient in dolichyl-phosphate-mannose (Dol-P-Man) synthase activity, compared with wild-type cells. This was not a result of a decrease in C-mannosyltransferase activity. Rat liver microsomes were used to C-mannosylate the N-terminal dodecapeptide from RNase 2 in vitro, with Dol-P-Man as the donor. This microsomal transferase activity was destroyed by heat and protease treatment, and displayed the same acceptor substrate specificity as the in vivo reaction studied previously. The C-C linkage between the indole and the mannosyl moiety was demonstrated by tandem electrospray mass spectrometry analysis of the product. GDP-Man, in the presence of Dol-P, functioned as a precursor in vitro with membranes from wild-type but not CHO Lec15 cells. In contrast, with Dol-P-Man both membrane preparations were equally active. It is concluded that a microsomal transferase catalyses C-mannosylation of Trp-7, and that the minimal biosynthetic pathway can be defined as: Man –> –> GDP-Man –> Dol-P-Man –> (C2-Man-)Trp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ERM proteins (ezrin, radixin, and moesin) are a group of band 4.1-related proteins that are proposed to function as membrane/cytoskeletal linkers. Previous biochemical studies have implicated RhoA in regulating the association of ERM proteins with their membrane targets. However, the specific effect and mechanism of action of this regulation is unclear. We show that lysophosphatidic acid stimulation of serum-starved NIH3T3 cells resulted in relocalization of radixin into apical membrane/actin protrusions, which was blocked by inactivation of Rho by C3 transferase. An activated allele of RhoA, but not Rac or CDC42Hs, was sufficient to induce apical membrane/actin protrusions and localize radixin or moesin into these structures in both Rat1 and NIH3T3 cells. Lysophosphatidic acid treatment led to phosphorylation of radixin preceding its redistribution into apical protrusions. Significantly, cotransfection of RhoAV14 or C3 transferase with radixin and moesin revealed that RhoA activity is necessary and sufficient for their phosphorylation. These findings reveal a novel function of RhoA in reorganizing the apical actin cytoskeleton and suggest that this function may be mediated through phosphorylation of ERM proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we show that expression of the neural PKC-substrate B-50 (growth-associated protein [GAP-43]) in Rat-1 fibroblasts induced the formation of filopodial extensions during spreading. This morphological change was accompanied by an enhanced formation of peripheral actin filaments and by accumulation of vinculin immunoreactivity in filopodial focal adhesions, colocalizing with B-50. In time lapse experiments, the B-50–induced filopodial extensions were shown to stay in close contact with the substratum and appeared remarkably stable, resulting in a delayed lamellar spreading of the fibroblasts. The morphogenetic effects of the B-50 protein were entirely dependent on the integrity of the two N-terminal cysteines involved in membrane association (C3C4), but were not significantly affected by mutations of the PKC-phosphorylation site (S41) or deletion of the C terminus (177–226). Cotransfection of B-50 with dominant negative Cdc42 or Rac did not prevent B-50–induced formation of filopodial cells, whereas this process could be completely blocked by cotransfection with dominant negative Rho or Clostridium botulinum C3-transferase. Conversely, constitutively active Rho induced a similar filopodial phenotype as B-50. We therefore propose that the induction of surface extensions by B-50 in spreading Rat-1 fibroblasts depends on Rho-guanosine triphosphatase function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, biochemical, and cell biological characterization of a novel member of the synaptobrevin/VAMP family. The amino acid sequence of endobrevin has 32, 33, and 31% identity to those of synaptobrevin/VAMP-1, synaptobrevin/VAMP-2, and cellubrevin, respectively. Membrane fractionation studies demonstrate that endobrevin is enriched in membrane fractions that are also enriched in the asialoglycoprotein receptor. Indirect immunofluorescence microscopy establishes that endobrevin is primarily associated with the perinuclear vesicular structures of the early endocytic compartment. The preferential association of endobrevin with the early endosome was further established by electron microscopy (EM) immunogold labeling. In vitro binding assays show that endobrevin interacts with immobilized recombinant α-SNAP fused to glutathione S-transferase (GST). Our results highlight the general importance of members of the synaptobrevin/VAMP protein family in membrane traffic and provide new avenues for future functional and mechanistic studies of this protein as well as the endocytotic pathway.