981 resultados para Thyroid Hormone Receptors beta


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND β2-microglobulin has been increasingly investigated as a diagnostic marker of kidney function and a prognostic marker of adverse outcomes. To date, non-renal determinants of β2-microglobulin levels have not been well described. Non-renal determinants are important for the interpretation and appraisal of the diagnostic and prognostic value of any endogenous kidney function marker. METHODS This cross-sectional analysis was performed within the framework of the www.seniorlabor.ch study, which includes subjectively healthy individuals aged ≥ 60 years. Factors known or suspected to have a non-renal association with kidney function markers were investigated for a non-renal association with serum β2-microglobulin. As a marker of kidney function, the Berlin Initiative Study equation 2 for the estimation of the estimated glomerular filtration rate (eGFR(BIS2)) in the elderly was employed. RESULTS A total of 1302 participants (714 females and 588 males) were enrolled in the study. The use of a multivariate regression model adjusting for age, gender and kidney function (eGFR(BIS2)) revealed age, male gender, and C-reactive protein level to be positively associated with β2-microglobulin levels. In addition, there was an inverse non-renal relationship between systolic blood pressure, total cholesterol and current smoking status. No association with markers of diabetes mellitus, body stature, nutritional risk, thyroid function or calcium and phosphate levels was observed. CONCLUSIONS Serum β2-microglobulin levels in elderly subjects are related to several non-renal factors. These non-renal factors are not congruent to those known from other markers (i.e. cystatin C and creatinine) and remind of classical cardiovascular risk factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like-peptide-1 (GLP1) analogs may induce thyroid or pancreatic diseases in animals, raising questions about their use in diabetic patients. There is, however, controversy regarding expression of GLP1 receptors (GLP1R) in human normal and diseased thyroid and pancreas. Here, 221 human thyroid and pancreas samples were analyzed for GLP1R immunohistochemistry and compared with quantitative in vitro GLP1R autoradiography. Neither normal nor hyperplastic human thyroids containing parafollicular C cells express GLP1R with either method. Papillary thyroid cancer do not, and medullary thyroid carcinomas rarely express GLP1R. Insulin- and somatostatin-producing cells in the normal pancreas express a high density of GLP1R, whereas acinar cells express them in low amounts. Ductal epithelial cells do not express GLP1R. All benign insulinomas express high densities of GLP1R, whereas malignant insulinomas rarely express them. All ductal pancreatic carcinomas are GLP1R negative, whereas 6/20 PanIN 1/2 and 0/12 PanIN 3 express GLP1R. Therefore, normal thyroid, including normal and hyperplastic C cells, or papillary thyroid cancer are not targets for GLP1 analogs in humans. Conversely, all pancreatic insulin- and somatostatin-producing cells are physiological GLP1 targets, as well as most acini. As normal ductal epithelial cells or PanIN 3 or ductal pancreatic carcinomas do not express GLP1R, it seems unlikely that GLP1R is related to neoplastic transformation in pancreas. GLP1R-positive medullary thyroid carcinomas and all benign insulinomas are candidates for in vivo GLP1R targeting.Modern Pathology advance online publication, 12 September 2014; doi:10.1038/modpathol.2014.113.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE Associations between subclinical thyroid dysfunction and fractures are unclear and clinical trials are lacking. OBJECTIVE To assess the association of subclinical thyroid dysfunction with hip, nonspine, spine, or any fractures. DATA SOURCES AND STUDY SELECTION The databases of MEDLINE and EMBASE (inception to March 26, 2015) were searched without language restrictions for prospective cohort studies with thyroid function data and subsequent fractures. DATA EXTRACTION Individual participant data were obtained from 13 prospective cohorts in the United States, Europe, Australia, and Japan. Levels of thyroid function were defined as euthyroidism (thyroid-stimulating hormone [TSH], 0.45-4.49 mIU/L), subclinical hyperthyroidism (TSH <0.45 mIU/L), and subclinical hypothyroidism (TSH ≥4.50-19.99 mIU/L) with normal thyroxine concentrations. MAIN OUTCOME AND MEASURES The primary outcome was hip fracture. Any fractures, nonspine fractures, and clinical spine fractures were secondary outcomes. RESULTS Among 70,298 participants, 4092 (5.8%) had subclinical hypothyroidism and 2219 (3.2%) had subclinical hyperthyroidism. During 762,401 person-years of follow-up, hip fracture occurred in 2975 participants (4.6%; 12 studies), any fracture in 2528 participants (9.0%; 8 studies), nonspine fracture in 2018 participants (8.4%; 8 studies), and spine fracture in 296 participants (1.3%; 6 studies). In age- and sex-adjusted analyses, the hazard ratio (HR) for subclinical hyperthyroidism vs euthyroidism was 1.36 for hip fracture (95% CI, 1.13-1.64; 146 events in 2082 participants vs 2534 in 56,471); for any fracture, HR was 1.28 (95% CI, 1.06-1.53; 121 events in 888 participants vs 2203 in 25,901); for nonspine fracture, HR was 1.16 (95% CI, 0.95-1.41; 107 events in 946 participants vs 1745 in 21,722); and for spine fracture, HR was 1.51 (95% CI, 0.93-2.45; 17 events in 732 participants vs 255 in 20,328). Lower TSH was associated with higher fracture rates: for TSH of less than 0.10 mIU/L, HR was 1.61 for hip fracture (95% CI, 1.21-2.15; 47 events in 510 participants); for any fracture, HR was 1.98 (95% CI, 1.41-2.78; 44 events in 212 participants); for nonspine fracture, HR was 1.61 (95% CI, 0.96-2.71; 32 events in 185 participants); and for spine fracture, HR was 3.57 (95% CI, 1.88-6.78; 8 events in 162 participants). Risks were similar after adjustment for other fracture risk factors. Endogenous subclinical hyperthyroidism (excluding thyroid medication users) was associated with HRs of 1.52 (95% CI, 1.19-1.93) for hip fracture, 1.42 (95% CI, 1.16-1.74) for any fracture, and 1.74 (95% CI, 1.01-2.99) for spine fracture. No association was found between subclinical hypothyroidism and fracture risk. CONCLUSIONS AND RELEVANCE Subclinical hyperthyroidism was associated with an increased risk of hip and other fractures, particularly among those with TSH levels of less than 0.10 mIU/L and those with endogenous subclinical hyperthyroidism. Further study is needed to determine whether treating subclinical hyperthyroidism can prevent fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE AND BACKGROUND Anemia and thyroid dysfunction are common and often co-occur. Current guidelines recommend the assessment of thyroid function in the work-up of anemia, although evidence on this association is scarce. PATIENTS AND METHODS In the "European Prospective Investigation of Cancer" (EPIC)-Norfolk population-based cohort, we aimed to examine the prevalence and type of anemia (defined as hemoglobin <13 g/dl for men and <12 g/dl for women) according to different thyroid function groups. RESULTS The mean age of the 8791 participants was 59.4 (SD 9.1) years and 55.2% were women. Thyroid dysfunction was present in 437 (5.0%) and anemia in 517 (5.9%) participants. After excluding 121 participants with three most common causes of anemia (chronic kidney disease, inflammation, iron deficiency), anemia was found in 4.7% of euthyroid participants. Compared with the euthyroid group, the prevalence of anemia was significantly higher in overt hyperthyroidism (14.6%, P < .01), higher with borderline significance in overt hypothyroidism (7.7%, P = .05) and not increased in subclinical thyroid dysfunction (5.0% in subclinical hypothyroidism, 3.3% in subclinical hyperthyroidism). Anemia associated with thyroid dysfunction was mainly normocytic (94.0%), and rarely macrocytic (6.0%). CONCLUSION The prevalence of anemia was higher in overt hyperthyroidism, but not increased in subclinical thyroid dysfunction. Systematic measurement of thyroid-stimulating hormone in anemic patients is likely to be useful only after excluding common causes of anemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Venous thromboembolism (VTE) and subclinical thyroid dysfunction (SCTD) are both common in elderly patients. SCTD has been related to a hypercoagulable state and increased thromboembolic risk. However, prospective data on the relationship between SCTD and VTE are lacking. OBJECTIVES To investigate the relationship between SCTD and recurrent VTE (rVTE), all-cause mortality, and thrombophilic biomarkers. PATIENTS Elderly participants with VTE. METHODS In a prospective multicenter cohort, thyroid hormones and thrombophilic biomarkers were measured 1 year after acute VTE, as both may be influenced by acute thrombosis. We defined subclinical hypothyroidism (SHypo) as elevated thyroid stimulating hormone levels (TSH=4.50-19.99 mIU/l), and subclinical hyperthyroidism (SHyper) as TSH<0.45, both with normal free thyroxine levels. Outcomes were incidence of rVTE and overall mortality during follow-up starting after the 1-year blood sampling. RESULTS Of 561 participants (58% with anticoagulation), 6% had SHypo and 5% SHyper. After 20.8 months of mean follow-up, 9% developed rVTE and 10% died. rVTE incidence rate was 7.2 (95% confidence interval:2.7-19.2) per 100 patient-years in SHypo, 0.0 (0.0-7.6) in SHyper and 5.9 (4.4-7.8) in euthyroid participants. In multivariate analyses, the sub-hazard ratio [SHR] for rVTE was 0.00 (0.00-0.58) in SHyper and 1.50 (0.52-4.34) in SHypo compared to euthyroids, without increased thrombophilic biomarkers. SHyper (HR 0.80,0.23-2.81) and SHypo (HR 0.99,0.30-3.29) were not associated with mortality. CONCLUSION In elderly patients, SHyper may be associated with lower rVTE risks. SHypo showed a non-statistically significant pattern of an association with rVTE, without increased mortality or differences in thrombophilic biomarkers. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosine has been identified in the anterior pituitary gland and is secreted from cultured folliculostellate (FS) cells. To determine whether adenosine controls the secretion of anterior pituitary hormones in vitro, adenosine was incubated with anterior pituitaries. It stimulated prolactin (PRL) release at the lowest concentration used (10−10 M); the stimulation peaked at 10−8 M with a threefold increase in release and declined to minimal stimulation at 10−4 and 10−3 M. Follicle-stimulating hormone release was maximally inhibited at 10−8 M, whereas luteinizing hormone release was not significantly inhibited. Two selective A1 adenosine receptor antagonists (10−7 or 10−5 M) had no effect on basal PRL release, but either antagonist completely blocked the response to the most effective concentration of adenosine (10−8 M). In contrast, a highly specific A2 receptor antagonist (10−7 or 10−5 M) had no effect on basal PRL release or the stimulation of PRL release induced by adenosine (10−8 M). We conclude that adenosine acts to stimulate PRL release in vitro by activating A1 receptors. Since the A1 receptors decrease intracellular-free calcium, this would decrease the activation of nitric oxide synthase in the FS cells, resulting in decreased release of nitric oxide (NO). NO inhibits PRL release by activating guanylate cyclase that synthesizes cGMP from GTP; cGMP concentrations increase in the lactotrophs leading to inhibition of PRL release. In the case of adenosine, NO release from the FS cells decreases, resulting in decreased concentrations of NO in the lactotrophs, consequent decreased cGMP formation, and resultant increased PRL release.