994 resultados para Thyroid Gland -- metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Recent discussions have focused on redefining noninvasive follicular variant of papillary thyroid carcinoma (NI-FVPTC) as a neoplasm rather than a carcinoma. This study assesses the potential impact of such a reclassification on the implied risk of malignancy (ROM) for the diagnostic categories of The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC). METHODS: The study consisted of consecutive fine-needle aspiration biopsy (FNAB) cases collected between January 1, 2013 and June 30, 2014 from 5 academic institutions. Demographic information, cytology diagnoses, and surgical pathology follow-up were recorded. The ROM was calculated with and without NI-FVPTC and was presented as a range: all cases (ie, overall risk of malignancy [OROM]) versus those with surgical follow-up only. RESULTS: The FNAB cohort consisted of 6943 thyroid nodules representing 5179 women and 1409 men with an average age of 54 years (range, 9-94 years). The combined average ROM and OROM for the diagnostic categories of TBSRTC were as follows: nondiagnostic, 4.4% to 25.3%; benign, 0.9% to 9.3%; atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS), 12.1% to 31.2%; follicular neoplasm (FN), 21.8% to 33.2%; suspicious for malignancy (SM), 62.1% to 82.6%; and malignant, 75.9% to 99.1%. The impact of reclassifying NI-FVPTC on the ROM and OROM was most pronounced and statistically significant in the 3 indeterminate categories: the AUS/FLUS category had a decrease of 5.2% to 13.6%, the FN category had a decrease of 9.9% to 15.1%, and the SM category had a decrease of 17.6% to 23.4% (P < .05), whereas the benign and malignant categories had decreases of 0.3% to 3.5% and 2.5% to 3.3%, respectfully. The trend of the effect on the ROM and OROM was similar for all 5 institutions. CONCLUSIONS: The results from this multi-institutional cohort indicate that the reclassification of NI-FVPTC will have a significant impact on the ROM for the 3 indeterminate categories of TBSRTC. Cancer Cytopathol 2016;124:181-187. © 2015 American Cancer Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the steep increase in the use of cross-sectional imaging in recent years, the incidentally detected adrenal lesion, or "incidentaloma", has become an increasingly common diagnostic problem for the radiologist, and a need for an approach to classifying these lesions as benign, malignant or indeterminate with imaging has spurred an explosion of research. While most incidentalomas represent benign disease, typically an adenoma, the possibility of malignant involvement of the adrenal gland necessitates a reliance on imaging to inform management decisions. In this article, we review the literature on adrenal gland imaging, with particular emphasis on computed tomography, magnetic resonance imaging, and photon-emission tomography, and discuss how these findings relate to clinical practice. Emerging technologies, such as contrast-enhanced ultrasonography, dual-energy computed tomography, and magnetic resonance spectroscopic imaging will also be briefly addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractObjective:To evaluate the association between Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC).Materials and Methods:The patients were evaluated by ultrasonography-guided fine needle aspiration cytology. Typical cytopathological aspects and/or classical histopathological findings were taken into consideration in the diagnosis of HT, and only histopathological results were considered in the diagnosis of PTC.Results:Among 1,049 patients with multi- or uninodular goiter (903 women and 146 men), 173 (16.5%) had cytopathological features of thyroiditis. Thirty-three (67.4%) out of the 49 operated patients had PTC, 9 (27.3%) of them with histopathological features of HT. Five (31.3%) out of the 16 patients with non-malignant disease also had HT. In the groups with HT, PTC, and PCT+HT, the female prevalence rate was 100%, 91.6%, and 77.8%, respectively. Mean age was 41.5, 43.3, and 48.5 years, respectively. No association was observed between the two diseases in the present study where HT occurred in 31.1% of the benign cases and in 27.3% of malignant cases (p = 0.8).Conclusion:In spite of the absence of association between HT and PCT, the possibility of malignancy in HT should always be considered because of the coexistence of the two diseases already reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We aimed to determine the impact of SPECT/CT performed in addition to whole-­‐body scintigraphy augmented with prone lateral views in patients with well-­‐differentiated thyroid carcinoma. Methods and Materials: This retrospective study included 141 patients (87 female, 54 male, mean age 47 years) with well-­‐differentiated thyroid carcinoma (105 papillary, 31 follicular, 1 Hürthle cell and 4 poorly differentiated) treated with radioiodine therapy (1000-7400 MBq). Patients were referred for either first postsurgical therapy (n=76) or further treatment (n=65). Two nuclear medicine physicians interpreted the scans in consensus (first whole-­‐body scintigraphy with prone lateral view, then SPECT/CT) reporting abnormal iodine uptake in the thyroid bed, lymph nodes and distant metastasis. The corresponding ATA risk score was calculated for each patient before and after SPECT/CT, as well as change in disease extension Results: The analysis showed a difference between scintigraphy and SPECT/CT in n=17 lesions in 14 patients (9.9%): 12 were described as suspicious on scintigraphy and could be considered as benign on SPECT/CT (3 corresponded to local iodine uptake, 6 to lymph nodes metastases and 3 to distant metastases). The others 5 corresponded to metastases (4 lymph nodes and 1 distant) that were not seen on whole-­‐body scintigraphy augmented with prone lateral views. In 10 of 141 (7.1%) patients, we observed a change in ATA risk stratification, with a risk increase in 4 of them (2.8%). Conclusion: SPECT/CT allowed detecting 5 focal lesions missed on planar scintigraphy, and to precise benignity of 12 suspicious lesions on planar scintigraphy. Moreover, SPECT/CT improved the risk stratification in 10 patients with a significant change in the patient management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction)while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.