939 resultados para Three-dimensional Structure
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
Recent research has examined the factors controlling the geometrical configuration of bifurcations, determined the range of stability conditions for a number of bifurcation types and assessed the impact of perturbations on bifurcation evolution. However, the flow division process and the parameters that influence flow and sediment partitioning are still poorly characterized. To identify and isolate these parameters, three-dimensional velocities were measured at 11 cross-sections in a fixed-walled experimental bifurcation. Water surface gradients were controlled, and systematically varied, using a weir in each distributary. As may be expected, the steepest distributary conveyed the most discharge ( was dominant) while the mildest distributary conveyed the least discharge ( was subordinate). A zone of water surface super-elevation was co-located with the bifurcation in symmetric cases or displaced into the subordinate branch in asymmetric cases. Downstream of a relatively acute-angled bifurcation, primary velocity cores were near to the water surface and against the inner banks, with near-bed zones of lower primary velocity at the outer banks. Downstream of an obtuse-angled bifurcation, velocity cores were initially at the outer banks, with near-bed zones of lower velocities at the inner banks, but patterns soon reverted to match the acute-angled case. A single secondary flow cell was generated in each distributary, with water flowing inwards at the water surface and outwards at the bed. Circulation was relatively enhanced within the subordinate branch, which may help explain why subordinate distributaries remain open, may play a role in determining the size of commonly-observed topographic features, and may thus exert some control on the stability of asymmetric bifurcations. Further, because larger values of circulation result from larger gradient disadvantages, the length of confluence-diffluence units in braided rivers or between diffluences within delta distributary networks may vary depending upon flow structures inherited from upstream and whether, and how, they are fed by dominant or subordinate distributaries. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Three Sm(2 Å)/Fe(3 Å) multilayers have been made using two electron beams in a high vacuum chamber onto very thin Kapton foils at different substrate temperatures, (Ts=40°C, 150°C and 230°C), with the same total thickness of 3000 Å. We have found that the substrate temperature strongly affects structure and magnetic properties of the samples. For a substrate temperature of 150°C the sample behaves as a three dimensional random magnet.
Resumo:
The purpose of this work was to evaluate the ability of 80 MHz ultrasonography to differentiate intra-retinal layers and quantitatively assess photoreceptor dystrophy in small animal models. Four groups of 10 RCS rats each (five dystrophic and five controls) were explored at 25, 35, 45 and 55 days post-natal (PN). A series of retina cross-sections were obtained ex vivo from outside intact eyes using an 80 MHz three-dimensional ultrasound backscatter microscope (20-microm-axial resolution). Ultrasound features of normal retina were correlated to those of corresponding histology and thickness measurements of photoreceptor segment and nuclear layers were performed on all groups. To show the ability of 80 MHz ultrasonography to distinguish the retinal degeneration in vivo, one RCS rat was explored at 25 and 55 days post-natal. Ultrasound image of normal retina displayed four distinct layers marked by reflections at neurites/nuclei interfaces and permitted to differentiate the photoreceptor segment and nuclear layers. The backscatter level from the retina was shown to be related to the size, density and organization of the intra-layer structure. Ultrasound thickness measurements highly correlated with histologic measurements. A thinning (p<0.05) of outer nuclear layer (ONL) was detected over time for controls and was thought to be assigned to retina maturation. Retinal degeneration started at PN35 and resulted in a more pronounced ONL thinning (p<0.05) over time. ONL degeneration was accompanied by segment layer thickening (p<0.05) at PN35 and thinning thereafter. These changes may indicate accumulation of outer segment debris at PN35 then progressive destruction. In vivo images of rat intra-retinal structure showed the ability of the method to distinguish the photoreceptor layer changes. Our results indicate that 80 MHz ultrasonography reveals intra-retinal layers and is sensitive to age and degenerative changes of photoreceptors. This technique has great potential to follow-up retinal dystrophy and therapeutic effects in vivo.
Resumo:
BACKGROUND: Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. METHODS: In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. RESULTS: Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. CONCLUSIONS: Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.
Resumo:
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Resumo:
Transport properties of GaAs / δ – Mn / GaAs / InxGa1-xAs / GaAs structure with Mn δ – layer, which is separated from InxGa1-xAs quantum well (QW) by 3 nm thick GaAs spacer was investigated. This structure with high mobility was characterized by X-ray difractometry and reflectometry. Transport and electrical properties of the structure were measured by using Pulsed Magnetic Field System (PMFS). During investigation of the Shubnikov – de Haas and the Hall effects the main parameters of QW structure such as cyclotron mass, Fermi level, g – factor, Dingle temperature and concentration of holes were estimated. Obtained results show high quality of the prepared structure. However, anomalous Hall effect at temperatures 2.09 K, 3 K, 4.2 K is not clearly observed. Attempts to identify magnetic moment were made. For this purpose the polarity of the filed was changed to the opposite at each shot. As a result hysteresis loop was not observed in the magnetic field dependences of the anomalous Hall resistivity.This can be attributed to the imperfection of the experimental setup.
Resumo:
The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
Dans un premier temps, nous avons modélisé la structure d’une famille d’ARN avec une grammaire de graphes afin d’identifier les séquences qui en font partie. Plusieurs autres méthodes de modélisation ont été développées, telles que des grammaires stochastiques hors-contexte, des modèles de covariance, des profils de structures secondaires et des réseaux de contraintes. Ces méthodes de modélisation se basent sur la structure secondaire classique comparativement à nos grammaires de graphes qui se basent sur les motifs cycliques de nucléotides. Pour exemplifier notre modèle, nous avons utilisé la boucle E du ribosome qui contient le motif Sarcin-Ricin qui a été largement étudié depuis sa découverte par cristallographie aux rayons X au début des années 90. Nous avons construit une grammaire de graphes pour la structure du motif Sarcin-Ricin et avons dérivé toutes les séquences qui peuvent s’y replier. La pertinence biologique de ces séquences a été confirmée par une comparaison des séquences d’un alignement de plus de 800 séquences ribosomiques bactériennes. Cette comparaison a soulevée des alignements alternatifs pour quelques unes des séquences que nous avons supportés par des prédictions de structures secondaires et tertiaires. Les motifs cycliques de nucléotides ont été observés par les membres de notre laboratoire dans l'ARN dont la structure tertiaire a été résolue expérimentalement. Une étude des séquences et des structures tertiaires de chaque cycle composant la structure du Sarcin-Ricin a révélé que l'espace des séquences dépend grandement des interactions entre tous les nucléotides à proximité dans l’espace tridimensionnel, c’est-à-dire pas uniquement entre deux paires de bases adjacentes. Le nombre de séquences générées par la grammaire de graphes est plus petit que ceux des méthodes basées sur la structure secondaire classique. Cela suggère l’importance du contexte pour la relation entre la séquence et la structure, d’où l’utilisation d’une grammaire de graphes contextuelle plus expressive que les grammaires hors-contexte. Les grammaires de graphes que nous avons développées ne tiennent compte que de la structure tertiaire et négligent les interactions de groupes chimiques spécifiques avec des éléments extra-moléculaires, comme d’autres macromolécules ou ligands. Dans un deuxième temps et pour tenir compte de ces interactions, nous avons développé un modèle qui tient compte de la position des groupes chimiques à la surface des structures tertiaires. L’hypothèse étant que les groupes chimiques à des positions conservées dans des séquences prédéterminées actives, qui sont déplacés dans des séquences inactives pour une fonction précise, ont de plus grandes chances d’être impliqués dans des interactions avec des facteurs. En poursuivant avec l’exemple de la boucle E, nous avons cherché les groupes de cette boucle qui pourraient être impliqués dans des interactions avec des facteurs d'élongation. Une fois les groupes identifiés, on peut prédire par modélisation tridimensionnelle les séquences qui positionnent correctement ces groupes dans leurs structures tertiaires. Il existe quelques modèles pour adresser ce problème, telles que des descripteurs de molécules, des matrices d’adjacences de nucléotides et ceux basé sur la thermodynamique. Cependant, tous ces modèles utilisent une représentation trop simplifiée de la structure d’ARN, ce qui limite leur applicabilité. Nous avons appliqué notre modèle sur les structures tertiaires d’un ensemble de variants d’une séquence d’une instance du Sarcin-Ricin d’un ribosome bactérien. L’équipe de Wool à l’université de Chicago a déjà étudié cette instance expérimentalement en testant la viabilité de 12 variants. Ils ont déterminé 4 variants viables et 8 létaux. Nous avons utilisé cet ensemble de 12 séquences pour l’entraînement de notre modèle et nous avons déterminé un ensemble de propriétés essentielles à leur fonction biologique. Pour chaque variant de l’ensemble d’entraînement nous avons construit des modèles de structures tertiaires. Nous avons ensuite mesuré les charges partielles des atomes exposés sur la surface et encodé cette information dans des vecteurs. Nous avons utilisé l’analyse des composantes principales pour transformer les vecteurs en un ensemble de variables non corrélées, qu’on appelle les composantes principales. En utilisant la distance Euclidienne pondérée et l’algorithme du plus proche voisin, nous avons appliqué la technique du « Leave-One-Out Cross-Validation » pour choisir les meilleurs paramètres pour prédire l’activité d’une nouvelle séquence en la faisant correspondre à ces composantes principales. Finalement, nous avons confirmé le pouvoir prédictif du modèle à l’aide d’un nouvel ensemble de 8 variants dont la viabilité à été vérifiée expérimentalement dans notre laboratoire. En conclusion, les grammaires de graphes permettent de modéliser la relation entre la séquence et la structure d’un élément structural d’ARN, comme la boucle E contenant le motif Sarcin-Ricin du ribosome. Les applications vont de la correction à l’aide à l'alignement de séquences jusqu’au design de séquences ayant une structure prédéterminée. Nous avons également développé un modèle pour tenir compte des interactions spécifiques liées à une fonction biologique donnée, soit avec des facteurs environnants. Notre modèle est basé sur la conservation de l'exposition des groupes chimiques qui sont impliqués dans ces interactions. Ce modèle nous a permis de prédire l’activité biologique d’un ensemble de variants de la boucle E du ribosome qui se lie à des facteurs d'élongation.
Resumo:
Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.
Resumo:
The main task of this work has been to investigate the effects of anisotropy onto the propagation of seismic waves along the Upper Mantle below Germany and adjacent areas. Refraction- and reflexion seismic experiments proved the existence of Upper Mantle anisotropy and its influence onto the propagation of Pn-waves. By the 3D tomographic investigations that have been done here for the crust and the upper mantle, considering the influence of anisotropy, a gap for the investigations in Europe has been closed. These investigations have been done with the SSH-Inversionprogram of Prof. Dr. M. Koch, which is able to compute simultaneously the seismic structure and hypocenters. For the investigation, a dataset has been available with recordings between the years 1975 to 2003 with a total of 60249 P- and 54212 S-phase records of 10028 seismic events. At the beginning, a precise analysis of the residuals (RES, the difference between calculated and observed arrivaltime) has been done which confirmed the existence of anisotropy for Pn-phases. The recognized sinusoidal distribution has been compensated by an extension of the SSH-program by an ellipse with a slow and rectangular fast axis with azimuth to correct the Pn-velocities. The azimuth of the fast axis has been fixed by the application of the simultaneous inversion at 25° - 27° with a variation of the velocities at +- 2.5 about an average value at 8 km/s. This new value differs from the old one at 35°, recognized in the initial residual analysis. This depends on the new computed hypocenters together with the structure. The application of the elliptical correction has resulted in a better fit of the vertical layered 1D-Model, compared to the results of preceding seismological experiments and 1D and 2D investigations. The optimal result of the 1D-inversion has been used as initial starting model for the 3D-inversions to compute the three dimensional picture of the seismic structure of the Crust and Upper Mantle. The simultaneous inversion has showed an optimization of the relocalization of the hypocenters and the reconstruction of the seismic structure in comparison to the geology and tectonic, as described by other investigations. The investigations for the seismic structure and the relocalization have been confirmed by several different tests. First, synthetic traveltime data are computed with an anisotropic variation and inverted with and without anisotropic correction. Further, tests with randomly disturbed hypocenters and traveltime data have been proceeded to verify the influence of the initial values onto the relocalization accuracy and onto the seismic structure and to test for a further improvement by the application of the anisotropic correction. Finally, the results of the work have been applied onto the Waldkirch earthquake in 2004 to compare the isotropic and the anisotropic relocalization with the initial optimal one to verify whether there is some improvement.
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
The molecules of ethyl 4-(5-amino-3-methyl-1H-pyrazol-1yl) benzoate, C13H15N3O2, are linked by two independent N-H center dot center dot center dot O hydrogen bonds into a chain of edge-fused and alternating R-4(2)(8) and R-2(2)(20) rings. A combination of N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds links the molecules of methyl 4-(5-amino-3-tert-butyl-1H-pyrazol-1-yl) benzoate, C15H19N3O2, into sheets of alternating R-2(2)(20) and R-6(6)(32) rings. In 4-(5-amino-3-methyl-1H-pyrazol-1-yl) benzoic acid monohydrate, C11H11N3O2 center dot H2O, the molecular components are linked into a three-dimensional framework structure by a combination of five independent hydrogen bonds, two of O-H center dot center dot center dot N type and one each of O-H center dot center dot center dot O, N-H center dot center dot center dot O and N-H center dot center dot center dot N types