951 resultados para Three-Dimensional
Resumo:
Antimicrobial peptides occur in a diverse range of organisms from microorganisms to insects, plants and animals. Although they all have the common function of inhibiting or killing invading microorganisms they achieve this function using an extremely diverse range of structural motifs. Their sizes range from approximately 10-90 amino acids. Most carry an overall positive charge, reflecting a preferred mode of electrostatic interaction with negatively charged microbial membranes. This article describes the structural diversity of a representative set of antimicrobial peptides divided into five structural classes: those with agr-helical structure, those with bgr-sheet structure, those with mixed helical / bgr- sheet structure, those with irregular structure, and those incorporating a macrocyclic structure. There is a significant diversity in both the size and charge of molecules within each of these classes and between the classes. The common feature of their three-dimensional structures is, however, that they have a degree of amphipathic character in which there is separate localisation of hydrophobic regions and positively charged regions. An emerging trend amongst antimicrobial proteins is the discovery of more macrocyclic analogues. Cyclisation appears to impart an additional degree of stability on these molecules and minimizes proteolytic cleavage. In conclusion, there appear to be a number of promising opportunities for the development of novel clinically useful antimicrobial peptides based on knowledge of the structures of naturally occurring antimicrobial molecules.
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Resumo:
Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(2428)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.
Resumo:
High-resolution numerical model simulations have been used to study the local and mesoscale thermal circulations in an Alpine lake basin. The lake (87 km(2)) is situated in the Southern Alps, New Zealand and is located in a glacially excavated rock basin surrounded by mountain ranges that reach 3000 m in height. The mesoscale model used (RAMS) is a three-dimensional non-hydrostatic model with a level 2.5 turbulence closure scheme. The model demonstrates that thermal forcing at local (within the basin) and regional (coast-to-basin inflow) scales drive the observed boundary-layer airflow in the lake basin during clear anticyclonic summertime conditions. The results show that the lake can modify (perturb) both the local and regional wind systems. Following sunrise, local thermal circulations dominate, including a lake breeze component that becomes embedded within the background valley wind system. This results in a more divergent flow in the basin extending across the lake shoreline. However, a closed lake breeze circulation is neither observed nor modelled. Modelling results indicate that in the latter part of the day when the mesoscale (coast-to-basin) inflow occurs, the relatively cold pool of lake air in the basin can cause the intrusion to decouple from the surface. Measured data provide qualitative and quantitative support for the model results.
Resumo:
Background: Glucose-insulin-potassium (GIK) infusion improves cardiac function and outcome during acute ischaemia. Objective: To determine whether GIK infusion benefits patients with chronic ischaemic left ventricular dysfunction, and if so whether this is related to the presence and nature of viable myocardium. Methods: 30 patients with chronic ischaemic left ventricular dysfunction had dobutamine echocardiography and were given a four hour infusion of GIK. Segmental responses were quantified by improvement in wall motion score index (WMSI) and peak systolic velocity using tissue Doppler. Global responses were assessed by left ventricular volume and ejection fraction, measured using a three dimensional reconstruction. Myocardial perfusion was determined in 15 patients using contrast echocardiography. Results: WMSI (mean (SD)) improved with dobutamine (from 1.8 (0.4) to 1.6 (0.4), p < 0.001) and with GIK (from 1.8 (0.4) to 1.7 (0.4) p < 0.001); there was a similar increment for both. Improvement in wall motion score with GIK was observed in 55% of the 62 segments classed as viable by dobutamine echocardiography, and in 5% of 162 classed as non-viable. There was an increment in peak systolic velocity after both doputamine echocardiography (from 2.5 (1.8) to 3.2 (2.2) cm/s, p < 0.01) and GIK (from 3.0 (1.6) to 3.5 (17) cm/s, p < 0.001). The GlK effects were not mediated by changes in pulse, mean arterial pressure, lactate, or catecholamines, nor did they correlate with myocardial perfusion. End systolic volume improved after GlK (p = 0.03), but only in 25 patients who had viable myocardium on dobutom ne echocardiography. Conclusions: In patients with viable myocardium and chronic left ventricular dysfunction, GlK improves wall motion score, myocardial velocity, and end systolic volume, independent of effects on haemodynamics or catecholamines. The response to GlK is observed in areas of normal and abnormal perfusion assessed by contrast echocardiography.
Resumo:
The three-dimensional structure of chemically synthesized CnErg1 (Ergtoxin), which specifically blocks HERG (human ether-a-go-go-related gene) K+ channels, was determined by nuclear magnetic resonance spectroscopy. CnErg1 consists of a triple-stranded beta-sheet and an a-helix, as is typical of K+ channel scorpion toxins. The peptide structure differs from the canonical structures in that the first beta-strand is shorter and is nearer to the second beta-strand rather than to the third beta-strand on the C-terminus. There is also a large hydrophobic patch on the surface of the toxin, surrounding a central lysine residue, Lys13. We postulate that this hydrophobic patch is likely to form part of the binding surface of the toxin. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
We investigate nonclassical Stokes-operator variances in continuous-wave polarization-squeezed laser light generated from one and two optical parametric amplifiers. A general expression of how Stokes-operator variances decompose into two-mode quadrature operator variances is given. Stokes parameter variance spectra for four different polarization-squeezed states have been measured and compared with a coherent state. Our measurement results are visualized by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincare sphere. We quantitatively compare the channel capacity of the different continuous-variable polarization states for communication protocols. It is shown that squeezed polarization states provide 33% higher channel capacities than the optimum coherent beam protocol.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Introduction and Objectives. Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons’ performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Materials and Methods. Each participant performed 3 laparoscopic tasks—Peg transfer, Wire chaser, Knot—in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Results. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). Conclusion. The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção