916 resultados para Thermo stabilizers
Resumo:
The ability to measure ocular surface temperature (OST) with thermal imaging offers potential insight into ocular physiology that has been acknowledged in the literature. The TH7102MX thermo-camera (NEC San-ei, Japan) continuously records dynamic information about OST without sacrificing spatial resolution. Using purpose-designed image analysis software, it was possible to select and quantify the principal components of absolute temperature values and the magnitude plus rate of temperature change that followed blinking. The techniques was examined for repeatability, reproducibility and the effects of extrinsic factors: a suitable experimental protocol was thus developed. The precise source of the measured thermal radiation has previously been subject toe dispute: in this thesis, the results of a study examining the relationships between physical parameters of the anterior eye and OST, confirmed a principal role for the tear film in OST. The dynamic changes in OST were studied in a large group of young subjects: quantifying the post-blink changes in temperature with time also established a role for tear flow dynamics in OST. Using dynamic thermography, the effects of hydrogel contact lens wear on OST were investigated: a model eye for in vivo work, and both neophyte and adapted contact lens wearers for in vivo studies. Significantly greater OST was observed in contact lens wearers, particularly with silicone hydrogel lenses compared to etafilcon A, and tended to be greatest when lenses had been worn continuously. This finding is important to understanding the ocular response to contact lens wear. In a group of normal subjects, dynamic thermography appeared to measure the ocular response to the application of artificial tear drops: this may prove to be a significant research and clinical tool.
Resumo:
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
SD Apo Lactoferrin-Tobramycin/Gentamicin Combinations are superior to monotherapy in the eradication of Pseudomonas aeruginosa Biofilm in the lungs Wilson Oguejiofor1, Lindsay J. Marshall1, Andrew J. Ingham1, Robert Price2, Jag. Shur2 1School of Life and Health Sciences, Aston University, Birmingham, UK. 2School of Pharmacy and Pharmacology, University of Bath, Bath, UK. KEYWORDS: lactoferrin, apo lactoferrin, spray drying, biofilm, cystic fibrosis Introduction Chronic lung infections from the opportunistic pathogeen Pseudomonas aeruginosa has been recognised as a major contributor to the incidences of high morbidity and mortality amongst cystic fibrosis (CF) patients (1,2). Currently, strategies for managing lung infections in CF patients involves the aggressive use of aerosolised antibiotics (3), however, increasing evidence suggests that the biofilm component of P. aeruginosa in the lower airway remains unperturbed and is associated with the development of antibiotic resistance. If this is so then, there is an urgent need to suitably adjust the current treatment strategy so that it includes compounds that prevent biofilm formation or disrupt established biofilms. It is well understood that biofilm formation is strongly dependent on iron (Fe3+) availability (4), therefore aerosolised anti-infective formulations which has the ability to chelate iron may essentially be a well suited therapy for eliminating P. aeruginosa biofilms on CF airway epithelial cells (5). In this study, we report the use of combination therapy; an aminoglycosides (tobramycin and gentamicin) and an antimicrobial peptide (lactoferrin) to significantly deplete P. aeruginosa biofilms. We demonstrate that lactoferrin-tobramycin and lactoferrin-gentamicin combinations are superior to the single antibiotic regime currently being employed to combat P. aeruginosa biofilms. MATERIALS AND METHOD Antibiotics: The antibiotics used in this study included gentamicin and tobramycin supplied by Fagron, UK. Bacterial strain and growth conditions: Pseudomonas aeruginosa strain PAO1 was provided by Prof. Peter Lambert of Aston University, Birmingham UK. The Strains were routinely grown from storage in a medium supplemented with magnesium chloride, glucose and casamino acids. Dialysis of lactoferrin: Apo lactoferrin was prepared by dialyzing a suspension of lactoferrin for 24 hrs at 4 °C against 20 mmol/L sodium dihydrogen phosphate, 20 mmol/L sodium acetate and 40 mmol/L EDTA (pH 3.5). Ferric ion (Fe3+) removal was verified by atomic absorption spectroscopy measurements. Spray drying of combinations of lactoferrin and apo lactoferrin with the different aminoglycosides: Combinations of tobramycin and gentamicin with the different preparations of lactoferrin were spray dried (SD) as a 2% (w/v) aqueous suspension. The spray drying parameters utilized for the production of suitable micron-sized particles includes: Inlet temperature, 180°C, spray flow rate, 606 L/hr; pump setting, 10%; aspirator setting, 85% (34m3/hr) to produce various outlet temperatures ranging from 99 - 106°C. Viability assay: To test the bactericidal activity of the various combinations, a viability assay was performed as previously described by Xu, Xiong et al. (6) with some modifications. Briefly, 10µL of ~ c. 6.6 x 107 CFU mL-1 P. aeruginosa strain PAO1 suspension were incubated (37°C, 60 mins) with 90 µL of a 2 µg/mL concentration of the various combinations and sampled every 10 mins. After incubation, the cells were diluted in deionised water and plated in Mueller hinton agar plates. Following 24 h incubation of the plates at 37°C, the percentage of viable cells was determined relative to incubation without added antibiotics. Biofilm assay: To test the susceptibility of the P. aeruginosa strain to various antibiotics in the biofilms mode of growth, overnight cultures of P. aeruginosa were diluted 1:100 into fresh medium supplemented with magnesium chloride, glucose and casamino acids. Aliquots of the dilution were dispensed into a 96 well dish and incubated (37°C, 24 h). Excess broth was removed and the number of colony forming units per milliliter (CFU/mL) of the planktonic bacteria was quantified. The biofilms were then washed and stained with 0.1% (w/v) crystal violet for 15 mins at room temperature. Following vigorous washing with water, the stained biofilms were solubilized in 30% acetic acid and the absorbance at 550nm of a 125 µL aliquot was determined in a microplate reader (Multiskan spectrum, Thermo Scientific) using 30% acetic acid in water as the blank. Aliquots of the broth prior to staining were used as an indicator of the level of planktonic growth. RESULTS AND DISCUSSION Following spray drying, the mean yield, volume weighted mean diameter and moisture content of lactoferrin powder were measured and were as follows (Table 1 and table 2); Table 1: Spray drying parameters FormulationInlet temp (°C)Outlet temp (°C)Airflow rate (L/hr)Mean yield (%)Moisture content (%) SD Lactoferrin18099 - 10060645.2 ±2.75.9 ±0.4 SD Apo Lactoferrin180100 - 10260657.8 ±1.85.7 ±0.2 Tobramycin180102 - 10460682.1 ±2.23.2 ±0.4 Lactoferrin + Tobramycin180104 - 10660687.5 ±1.43.7 ±0.2 Apo Lactoferrin + Tobramycin180103 - 10460676.3 ±2.43.3 ±0.5 Gentamicin18099 - 10260685.4 ±1.34.0 ±0.2 Lactoferrin + Gentamicin180102 - 10460687.3 ±2.13.9 ±0.3 Apo Lactoferrin + Gentamicin18099 -10360680.1±1.93.4 ±0.4 Table 2: Particle size distribution d10 d50d90 SD Lactoferrin1.384.9111.08 SD Apo Lactoferrin1.284.7911.04 SD Tobramycin1.254.9011.29 SD Lactoferrin + Tobramycin1.175.2715.23 SD Apo Lactoferrin + Tobramycin1.115.0614.31 SD Gentamicin1.406.0614.38 SD Lactoferrin + Gentamicin1.476.2314.41 SD Apo Lactoferrin + Gentamicin1.465.1511.53 The bactericidal activity of the various combinations were tested against P. aeruginosa PAO1 following a 60 minute incubation period (Figure 1 and Figure 2). While 2 µg/mL of a 1:1 combination of spray dried apo lactoferrin and Gentamicin was able to completely kill all bacterial cells within 40 mins, the same concentration was not as effective for the other antibiotic combinations. However, there was an overall reduction of bacterial cells by over 3 log units by the other combinations within 60 mins. Figure 1: Logarithmic plot of bacterial cell viability of various combinations of tobramycin and lactoferrin preparations at 2µg/mL (n = 3). Figure 2: Logarithmic plot of bacterial cell viability of various combinations of gentamicin and lactoferrin preparations at 2µg/mL (n = 3). Crystal violet staining showed that biofilm formation by P. aeruginosa PAO1 was significantly (ANOVA, p < 0.05) inhibited in the presence of the different lactoferrin preparations. Interestingly, apo lactoferrin and spray dried lactoferrin exhibited greater inhibition of both biofilm formation and biofilm persistence (Figure 2). Figure 2: Crystal violet staining of residual biofilms of P. aeruginosa following a 24hr incubation with the various combinations of antibiotics and an exposure to 48 hr formed biofilms. CONCLUSION In conclusion, combination therapy comprising of an antimicrobial peptide (lactoferrin) and an aminoglycosides (tobramycin or gentamicin) provides a feasible and alternative approach to monotherapy since the various combinations are more efficient than the respective monotherapy in the eradication of both planktonic and biofilms of P. aeruginosa. ACKNOWLEDGEMENT The authors would like to thank Mr. John Swarbrick and Friesland Campina for their generous donation of the Lactoferrin. REFERENCES 1.Hassett, D.J., Sutton, M.D., Schurr, M.J., Herr, A.B., Caldwell, C.C. and Matu, J.O. (2009), "Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways". Trends in Microbiology, 17, 130-138. 2.Trust, C.F. (2009), "Antibiotic treatment for cystic fibrosis". Report of the UK Cystic Fibrosis Trust Antibiotic Working Group. Consensus document. London: Cystic Fibrosis Trust. 3.Garcia-Contreras, L. and Hickey, A.J. (2002), "Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy". Advanced Drug Delivery Reviews, 54, 1491-1504. 4.O'May, C.Y., Sanderson, K., Roddam, L.F., Kirov, S.M. and Reid, D.W. (2009), "Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions". J Med Microbiol, 58, 765-773. 5.Reid, D.W., Carroll, V., O'May, C., Champion, A. and Kirov, S.M. (2007), "Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis". European Respiratory Journal, 30, 286-292. 6.Xu, G., Xiong, W., Hu, Q., Zuo, P., Shao, B., Lan, F., Lu, X., Xu, Y. and Xiong, S. (2010), "Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa". J Appl Microbiol, 109, 1311-1318.
Resumo:
Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.
Resumo:
A novel transition temperature in MeAM copolymer microgels is reported. Despite the fact that MeAM homopolymers do not show thermosensitive properties, a specific synthetic strategy leads to a thermo-responsive swelling behavior that could be potentially useful in medical and/or industrial applications. The pH and temperature-dependent swelling response of microgels of MeAM copolymerized with 2-aminomethylpyridine and ethylenediamine is reported. The changes in particle sizes, which depend on the nature of the surrounding environment, are recorded by QELS. The relation between copolymer structure and its novel behavior is analyzed by several techniques (1H NMR, TGA).
Resumo:
The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.
Resumo:
Context - Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. Objective - To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design - Cross-sectional, case-control, whole-brain DTI using TBSS. Setting - University research institute. Participants - Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures - Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results - Subjects with BD vs controls had significantly greater FA (t > 3.0, P = .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P = .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions - To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
Computational Fluid Dynamics (CFD) has found great acceptance among the engineering community as a tool for research and design of processes that are practically difficult or expensive to study experimentally. One of these processes is the biomass gasification in a Circulating Fluidized Bed (CFB). Biomass gasification is the thermo-chemical conversion of biomass at a high temperature and a controlled oxygen amount into fuel gas, also sometime referred to as syngas. Circulating fluidized bed is a type of reactor in which it is possible to maintain a stable and continuous circulation of solids in a gas-solid system. The main objectives of this thesis are four folds: (i) Develop a three-dimensional predictive model of biomass gasification in a CFB riser using advanced Computational Fluid Dynamic (CFD) (ii) Experimentally validate the developed hydrodynamic model using conventional and advanced measuring techniques (iii) Study the complex hydrodynamics, heat transfer and reaction kinetics through modelling and simulation (iv) Study the CFB gasifier performance through parametric analysis and identify the optimum operating condition to maximize the product gas quality. Two different and complimentary experimental techniques were used to validate the hydrodynamic model, namely pressure measurement and particle tracking. The pressure measurement is a very common and widely used technique in fluidized bed studies, while, particle tracking using PEPT, which was originally developed for medical imaging, is a relatively new technique in the engineering field. It is relatively expensive and only available at few research centres around the world. This study started with a simple poly-dispersed single solid phase then moved to binary solid phases. The single solid phase was used for primary validations and eliminating unnecessary options and steps in building the hydrodynamic model. Then the outcomes from the primary validations were applied to the secondary validations of the binary mixture to avoid time consuming computations. Studies on binary solid mixture hydrodynamics is rarely reported in the literature. In this study the binary solid mixture was modelled and validated using experimental data from the both techniques mentioned above. Good agreement was achieved with the both techniques. According to the general gasification steps the developed model has been separated into three main gasification stages; drying, devolatilization and tar cracking, and partial combustion and gasification. The drying was modelled as a mass transfer from the solid phase to the gas phase. The devolatilization and tar cracking model consist of two steps; the devolatilization of the biomass which is used as a single reaction to generate the biomass gases from the volatile materials and tar cracking. The latter is also modelled as one reaction to generate gases with fixed mass fractions. The first reaction was classified as a heterogeneous reaction while the second reaction was classified as homogenous reaction. The partial combustion and gasification model consisted of carbon combustion reactions and carbon and gas phase reactions. The partial combustion considered was for C, CO, H2 and CH4. The carbon gasification reactions used in this study is the Boudouard reaction with CO2, the reaction with H2O and Methanation (Methane forming reaction) reaction to generate methane. The other gas phase reactions considered in this study are the water gas shift reaction, which is modelled as a reversible reaction and the methane steam reforming reaction. The developed gasification model was validated using different experimental data from the literature and for a wide range of operating conditions. Good agreement was observed, thus confirming the capability of the model in predicting biomass gasification in a CFB to a great accuracy. The developed model has been successfully used to carry out sensitivity and parametric analysis. The sensitivity analysis included: study of the effect of inclusion of various combustion reaction; and the effect of radiation in the gasification reaction. The developed model was also used to carry out parametric analysis by changing the following gasifier operating conditions: fuel/air ratio; biomass flow rates; sand (heat carrier) temperatures; sand flow rates; sand and biomass particle sizes; gasifying agent (pure air or pure steam); pyrolysis models used; steam/biomass ratio. Finally, based on these parametric and sensitivity analysis a final model was recommended for the simulation of biomass gasification in a CFB riser.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Aim: To determine the dynamic emitted temperature changes of the anterior eye during and immediately after wearing different materials and modalities of soft contact lenses. Method: A dynamic, non-contact infrared camera (Thermo-Tracer TH7102MX, NEC San-ei) was used to record the ocular surface temperature (OST) in 48 subjects (mean age 21.7 ± 1.9 years) wearing: lotrafilcon-A contact lenses on a daily wear (LDW; n = 8) or continuous wear (LCW; n = 8) basis; balafilcon-A contact lenses on a daily wear (BDW; n = 8) or continuous wear (BCW; n = 8) basis; etafilcon-A contact lenses on a daily disposable regimen (EDW; n = 8); and no lenses (controls; n = 8). OST was measured continuously five times, for 8 s after a blink, following a minimum of 2 h wear and immediately following lens removal. Absolute temperature, changes in temperature post-blink and the dynamics of temperature changes were calculated. Results: OST immediately following contact lens wear was significantly greater compared to non-lens wearers (37.1 ± 1.7 °C versus 35.0 ± 1.1 °C; p < 0.005), predominantly in the LCW group (38.6 ± 1.0 °C; p < 0.0001). Lens surface temperature was highly correlated (r = 0.97) to, but lower than OST (by -0.62 ± 0.3 °C). There was no difference with modality of wear (DW 37.5 ± 1.6 °C versus CW 37.8 ± 1.9 °C; p = 0.63), but significant differences were found between etafilcon A and silicone hydrogel lens materials (35.3 ± 1.1 °C versus 37.5 ± 1.5 °C; p < 0.0005). Ocular surface cooling following a blink was not significantly affected by contact lens wear with (p = 0.07) or without (p = 0.47) lenses in situ. Conclusions: Ocular surface temperature is greater with hydrogel and greater still with silicone hydrogel contact lenses in situ, regardless of modality of wear. The effect is likely to be due to the thermal transmission properties of a contact lens. © 2004 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70°C to 80°C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.
Resumo:
Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To review data on the effectiveness of topiramate as a mood stabilizer. DATA SOURCES: Clinical literature accessed through MEDLINE (1985-September 2001) and the manufacturer. Key search terms included topiramate, mania, mood stabilizer, and bipolar disorder. DATA SYNTHESIS: The traditional standard therapy for bipolar disorder has been lithium. Other mood stabilizers are increasingly being used to manage this complex disorder. Studies that used topiramate in bipolar disorders were evaluated. CONCLUSIONS: The present data from open trials suggest that topiramate may possibly possess antimanic properties. Controlled, double-blind studies are required to confirm this efficacy