941 resultados para Textual information processing
Resumo:
Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.
Resumo:
Nesta dissertação apresentamos um trabalho de desenvolvimento e utilização de pulsos de radiofreqüência modulados simultaneamente em freqüência, amplitude e fase (pulsos fortemente modulados, SMP, do inglês Strongly Modulated Pulses) para criar estados iniciais e executar operações unitárias que servem como blocos básicos para processamento da informação quântica utilizando Ressonância Magnética Nuclear (RMN). As implementações experimentais foram realizas em um sistema de 3 q-bits constituído por spins nucleares de Césio 133 (spin nuclear 7/2) em uma amostra de cristal líquido em fase nemática. Os pulsos SMP´s foram construídos teoricamente utilizando um programa especialmente desenvolvido para esse fim, sendo o mesmo baseado no processo de otimização numérica Simplex Nelder-Mead. Através deste programa, os pulsos SMP foram otimizados de modo a executarem as operações lógicas desejadas com durações consideravelmente menores que aquelas realizadas usando o procedimento usual de RMN, ou seja, seqüências de pulsos e evoluções livres. Isso tem a vantagem de reduzir os efeitos de descoerência decorrentes da relaxação do sistema. Os conceitos teóricos envolvidos na criação dos SMPs são apresentados e as principais dificuldades (experimentais e teóricas) que podem surgir devido ao uso desses procedimentos são discutidas. Como exemplos de aplicação, foram produzidos os estados pseudo-puros usados como estados iniciais de operações lógicas em RMN, bem como operações lógicas que foram posteriormente aplicadas aos mesmos. Utilizando os SMP\'s também foi possível realizar experimentalmente os algoritmos quânticos de Grover e Deutsch-Jozsa para 3 q-bits. A fidelidade das implementações experimentais foi determinadas utilizando as matrizes densidade experimentais obtidas utilizando um método de tomografia da matriz densidade previamente desenvolvido.
Resumo:
Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.
Resumo:
The ontogeny of human empathy is better understood with reference to the evolutionary history of the social brain. Empathy has deep evolutionary, biochemical, and neurological underpinnings. Even the most advanced forms of empathy in humans are built on more basic forms and remain connected to core mechanisms associated with affective communication, social attachment, and parental care. In this paper, we argue that it is essential to consider empathy within a neurodevelopmental framework that recognizes both the continuities and changes in socioemotional understanding from infancy to adulthood. We bring together neuroevolutionary and developmental perspectives on the information processing and neural mechanisms underlying empathy and caring, and show that they are grounded in multiple interacting systems and processes. Moreover, empathy in humans is assisted by other abstract and domain-general high-level cognitive abilities such as executive functions, mentalizing and language, as well as the ability to differentiate another's mental states from one's own, which expand the range of behaviors that can be driven by empathy.
Resumo:
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.
Resumo:
Le traitement des émotions joue un rôle essentiel dans les relations interpersonnelles. Des déficits dans la reconnaissance des émotions évoquées par les expressions faciales et vocales ont été démontrés à la suite d’un traumatisme craniocérébral (TCC). Toutefois, la majorité des études n’ont pas différencié les participants selon le niveau de gravité du TCC et n’ont pas évalué certains préalables essentiels au traitement émotionnel, tels que la capacité à percevoir les caractéristiques faciales et vocales, et par le fait même, la capacité à y porter attention. Aucune étude ne s’est intéressée au traitement des émotions évoquées par les expressions musicales, alors que la musique est utilisée comme méthode d’intervention afin de répondre à des besoins de prise en charge comportementale, cognitive ou affective chez des personnes présentant des atteintes neurologiques. Ainsi, on ignore si les effets positifs de l’intervention musicale sont basés sur la préservation de la reconnaissance de certaines catégories d’émotions évoquées par les expressions musicales à la suite d’un TCC. La première étude de cette thèse a évalué la reconnaissance des émotions de base (joie, tristesse, peur) évoquées par les expressions faciales, vocales et musicales chez quarante et un adultes (10 TCC modéré-sévère, 9 TCC léger complexe, 11 TCC léger simple et 11 témoins), à partir de tâches expérimentales et de tâches perceptuelles contrôles. Les résultats suggèrent un déficit de la reconnaissance de la peur évoquée par les expressions faciales à la suite d’un TCC modéré-sévère et d’un TCC léger complexe, comparativement aux personnes avec un TCC léger simple et sans TCC. Le déficit n’est pas expliqué par un trouble perceptuel sous-jacent. Les résultats montrent de plus une préservation de la reconnaissance des émotions évoquées par les expressions vocales et musicales à la suite d’un TCC, indépendamment du niveau de gravité. Enfin, malgré une dissociation observée entre les performances aux tâches de reconnaissance des émotions évoquées par les modalités visuelle et auditive, aucune corrélation n’a été trouvée entre les expressions vocales et musicales. La deuxième étude a mesuré les ondes cérébrales précoces (N1, N170) et plus tardives (N2) de vingt-cinq adultes (10 TCC léger simple, 1 TCC léger complexe, 3 TCC modéré-sévère et 11 témoins), pendant la présentation d’expressions faciales évoquant la peur, la neutralité et la joie. Les résultats suggèrent des altérations dans le traitement attentionnel précoce à la suite d’un TCC, qui amenuisent le traitement ultérieur de la peur évoquée par les expressions faciales. En somme, les conclusions de cette thèse affinent notre compréhension du traitement des émotions évoquées par les expressions faciales, vocales et musicales à la suite d’un TCC selon le niveau de gravité. Les résultats permettent également de mieux saisir les origines des déficits du traitement des émotions évoquées par les expressions faciales à la suite d’un TCC, lesquels semblent secondaires à des altérations attentionnelles précoces. Cette thèse pourrait contribuer au développement éventuel d’interventions axées sur les émotions à la suite d’un TCC.
Resumo:
Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.
Resumo:
What constitutes effective corporate governance? Which director characteristics render boards effective at positively influencing firm-level performance outcomes? This dissertation examines these questions by taking a multilevel, multidisciplinary approach to corporate governance. I explore the individual-, team-, and firm- level factors that enable directors to serve effectively as strategic resources during international expansion. I argue that directors’ international experience improves their ability to serve as effective strategic consultants and resource providers to firms during the complex internationalization process. However, unlike prior research, which tends to assume that directors with the potential to provide important resources uniformly do so, I acknowledge contextual factors (i.e. board cohesiveness, strategic relevance of directors’ experience) that affect their propensity to actually influence outcomes. I explore these issues in three essays: one review essay and two empirical essays. In the first empirical essay, I integrate resource dependence theory with insights from social-psychological research to explore the influence of board capital on firms’ cross-border M&A performance. Using a sample of cross-border M&As completed by S&P 500 firms from 2004-2009, I find evidence that directors’ depth of international experience is associated with superior pre-deal outcomes. This suggests that boards’ deep, market-specific knowledge is valuable during the target selection phase. I further find that directors’ breadth of international experience is associated with superior post-deal performance, suggesting that these directors’ global mindset helps firms in the post-M&A integration phase. I also find that these relationships are positively moderated by board cohesiveness, measured by boards’ internal social ties. In the second empirical essay, I explore the boundary conditions of international board capital by examining how the characteristics of firms’ internationalization strategy moderate the relationship between board capital and firm performance. Using a panel of 377 S&P 500 firms observed from 2004-2011, I find that boards’ depth of international experience and social capital are more important during early stages of internationalization, when firms tend to lack market knowledge and legitimacy in the host markets. On the other hand, I find that breadth of international experience has a stronger relationship with performance when firms’ have higher scope of internationalization, when information-processing demands are higher.
Resumo:
Recent studies indicate that a single bout of physical exercise can have immediatepositive effects on cognitive performance of children and adolescents. However, thetype of exercise that affects cognitive performance the most in young adolescents isnot fully understood. Therefore, this controlled study examined the acute effects ofthree types of 12-min classroom-based exercise sessions on information processingspeed and selective attention. The three conditions consisted of aerobic, coordination,and strength exercises, respectively. In particular, this study focused on the feasibilityand efficiency of introducing short bouts of exercise in the classroom. One hundredand ninety five students (5th and 6th grade; 10–13 years old) participated in a doublebaseline within-subjects design, with students acting as their own control. Exercise typewas randomly assigned to each class and acted as between-subject factor. Before andimmediately after both the control and the exercise session, students performed twocognitive tests that measured information processing speed (Letter Digit SubstitutionTest) and selective attention (d2 Test of Attention). The results revealed that exercisingat low to moderate intensity does not have an effect on the cognitive parameters testedin young adolescents. Furthermore, there were no differential effects of exercise type.The results of this study are discussed in terms of the caution which should be takenwhen conducting exercise sessions in a classroom setting aimed at improving cognitive performance.
Resumo:
Paper presentation at the TEA2016 conference, Tallinn, Estonia.
Resumo:
Key Performance Indicators (KPIs) and their predictions are widely used by the enterprises for informed decision making. Nevertheless , a very important factor, which is generally overlooked, is that the top level strategic KPIs are actually driven by the operational level business processes. These two domains are, however, mostly segregated and analysed in silos with different Business Intelligence solutions. In this paper, we are proposing an approach for advanced Business Simulations, which converges the two domains by utilising process execution & business data, and concepts from Business Dynamics (BD) and Business Ontologies, to promote better system understanding and detailed KPI predictions. Our approach incorporates the automated creation of Causal Loop Diagrams, thus empowering the analyst to critically examine the complex dependencies hidden in the massive amounts of available enterprise data. We have further evaluated our proposed approach in the context of a retail use-case that involved verification of the automatically generated causal models by a domain expert.
Resumo:
The annotation of Business Dynamics models with parameters and equations, to simulate the system under study and further evaluate its simulation output, typically involves a lot of manual work. In this paper we present an approach for automated equation formulation of a given Causal Loop Diagram (CLD) and a set of associated time series with the help of neural network evolution (NEvo). NEvo enables the automated retrieval of surrogate equations for each quantity in the given CLD, hence it produces a fully annotated CLD that can be used for later simulations to predict future KPI development. In the end of the paper, we provide a detailed evaluation of NEvo on a business use-case to demonstrate its single step prediction capabilities.
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Resumo:
L’objectif principal de cette thèse était d’obtenir, via l’électrophysiologie cognitive, des indices de fonctionnement post-traumatisme craniocérébral léger (TCCL) pour différents niveaux de traitement de l’information, soit l’attention sélective, les processus décisionnels visuoattentionnels et les processus associés à l’exécution d’une réponse volontaire. L’hypothèse centrale était que les mécanismes de production des lésions de même que la pathophysiologie caractérisant le TCCL engendrent des dysfonctions visuoattentionnelles, du moins pendant la période aiguë suivant le TCCL (i.e. entre 1 et 3 mois post-accident), telles que mesurées à l’aide d’un nouveau paradigme électrophysiologique conçu à cet effet. Cette thèse présente deux articles qui décrivent le travail effectué afin de rencontrer ces objectifs et ainsi vérifier les hypothèses émises. Le premier article présente la démarche réalisée afin de créer une nouvelle tâche d’attention visuospatiale permettant d’obtenir les indices électrophysiologiques (amplitude, latence) et comportementaux (temps de réaction) liés aux processus de traitement visuel et attentionnel précoce (P1, N1, N2-nogo, P2, Ptc) à l’attention visuelle sélective (N2pc, SPCN) et aux processus décisionnels (P3b, P3a) chez un groupe de participants sains (i.e. sans atteinte neurologique). Le deuxième article présente l’étude des effets persistants d’un TCCL sur les fonctions visuoattentionelles via l’obtention des indices électrophysiologiques ciblés (amplitude, latence) et de données comportementales (temps de réaction à la tâche et résultats aux tests neuropsychologiques) chez deux cohortes d’individus TCCL symptomatiques, l’une en phase subaigüe (3 premiers mois post-accident), l’autre en phase chronique (6 mois à 1 an post-accident), en comparaison à un groupe de participants témoins sains. Les résultats des articles présentés dans cette thèse montrent qu’il a été possible de créer une tâche simple qui permet d’étudier de façon rapide et peu coûteuse les différents niveaux de traitement de l’information impliqués dans le déploiement de l’attention visuospatiale. Par la suite, l’utilisation de cette tâche auprès d’individus atteints d’un TCCL testés en phase sub-aiguë ou en phase chronique a permis d’objectiver des profils d’atteintes et de récupération différentiels pour chacune des composantes étudiées. En effet, alors que les composantes associées au traitement précoce de l’information visuelle (P1, N1, N2) étaient intactes, certaines composantes attentionnelles (P2) et cognitivo-attentionnelles (P3a, P3b) étaient altérées, suggérant une dysfonction au niveau des dynamiques spatio-temporelles de l’attention, de l’orientation de l’attention et de la mémoire de travail, à court et/ou à long terme après le TCCL, ceci en présence de déficits neuropsychologiques en phase subaiguë surtout et d’une symptomatologie post-TCCL persistante. Cette thèse souligne l’importance de développer des outils diagnostics sensibles et exhaustifs permettant d’objectiver les divers processus et sous-processus cognitifs susceptible d’être atteints après un TCCL.