1000 resultados para Texas Medical Center Library


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Renal involvement is a serious manifestation of systemic lupus erythematosus (SLE); it may portend a poor prognosis as it may lead to end-stage renal disease (ESRD). The purpose of this study was to determine the factors predicting the development of renal involvement and its progression to ESRD in a multi-ethnic SLE cohort (PROFILE). METHODS AND FINDINGS: PROFILE includes SLE patients from five different United States institutions. We examined at baseline the socioeconomic-demographic, clinical, and genetic variables associated with the development of renal involvement and its progression to ESRD by univariable and multivariable Cox proportional hazards regression analyses. Analyses of onset of renal involvement included only patients with renal involvement after SLE diagnosis (n = 229). Analyses of ESRD included all patients, regardless of whether renal involvement occurred before, at, or after SLE diagnosis (34 of 438 patients). In addition, we performed a multivariable logistic regression analysis of the variables associated with the development of renal involvement at any time during the course of SLE.In the time-dependent multivariable analysis, patients developing renal involvement were more likely to have more American College of Rheumatology criteria for SLE, and to be younger, hypertensive, and of African-American or Hispanic (from Texas) ethnicity. Alternative regression models were consistent with these results. In addition to greater accrued disease damage (renal damage excluded), younger age, and Hispanic ethnicity (from Texas), homozygosity for the valine allele of FcgammaRIIIa (FCGR3A*GG) was a significant predictor of ESRD. Results from the multivariable logistic regression model that included all cases of renal involvement were consistent with those from the Cox model. CONCLUSIONS: Fcgamma receptor genotype is a risk factor for progression of renal disease to ESRD. Since the frequency distribution of FCGR3A alleles does not vary significantly among the ethnic groups studied, the additional factors underlying the ethnic disparities in renal disease progression remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pivotal mediator of actin dynamics is the protein cofilin, which promotes filament severing and depolymerization, facilitating the breakdown of existing filaments, and the enhancement of filament growth from newly created barbed ends. It does so in concert with actin interacting protein 1 (Aip1), which serves to accelerate cofilin's activity. While progress has been made in understanding its biochemical functions, the physiologic processes the cofilin/Aip1 complex regulates, particularly in higher organisms, are yet to be determined. We have generated an allelic series for WD40 repeat protein 1 (Wdr1), the mammalian homolog of Aip1, and report that reductions in Wdr1 function produce a dramatic phenotype gradient. While severe loss of function at the Wdr1 locus causes embryonic lethality, macrothrombocytopenia and autoinflammatory disease develop in mice carrying hypomorphic alleles. Macrothrombocytopenia is the result of megakaryocyte maturation defects, which lead to a failure of normal platelet shedding. Autoinflammatory disease, which is bone marrow-derived yet nonlymphoid in origin, is characterized by a massive infiltration of neutrophils into inflammatory lesions. Cytoskeletal responses are impaired in Wdr1 mutant neutrophils. These studies establish an essential requirement for Wdr1 in megakaryocytes and neutrophils, indicating that cofilin-mediated actin dynamics are critically important to the development and function of both cell types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a locally aggressive collagenous myofibroblastic neoplasm of the mandible in an 18-year-old male. Clinically, the lesion presented with rapid growth and irregular mandibular bone destruction. Grossly, the tumor was 10 cm in greatest dimension, light-tan, firm, and involving the posterior one-thirds of the body and inferior half of the left mandibular ramus. Histologically, the lesion was composed of a loose spindle cell proliferation interspersed with periodic dense bands of collagen. The spindle cells reacted positively to smooth muscle actin, calponin, and focally to desmin and were negative for S-100, pan-cytokeratin, CD99, CD34 and caldesmon, supporting myofibroblastic derivation. At our 4 year follow-up, the patient remained free of local recurrence and surgery related complications. The clinicopathologic findings and the differential diagnosis of this lesion is presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the same population in which mutation frequency is evaluated. We provide the statistical basis for evaluating the incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated. Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD), the two most frequent autosomal recessive disease in Caucasian populations and the two most frequent mutations (delta F508 and G985) that occur on these disease allele-bearing chromosomes, we show that, with 50-100 patients and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to rare autosomal dominant diseases for which disease-specific mutations are found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native peoples of the New World, including Amerindians and admixed Latin Americans such as Mexican-Americans, are highly susceptible to diseases of the gallbladder. These include cholesterol cholelithiasis (gallstones) and its complications, as well as cancer of the gallbladder. Although there is clearly some necessary dietary or other environmental risk factor involved, the pattern of disease prevalence is geographically associated with the distribution of genes of aboriginal Amerindian origin, and levels of risk generally correspond to the degree of Amerindian admixture. This pattern differs from that generally associated with Westernization, which suggests a gene-environment interaction, and that within an admixed population there is a subset whose risk is underestimated when admixture is ignored. The risk that an individual of a susceptible New World genotype will undergo a cholecystectomy by age 85 can approach 40% in Mexican-American females, and their risk of gallbladder cancer can reach several percent. These are heretofore unrecognized levels of risk, especially of the latter, because previous studies have not accounted for admixture or for the loss of at-risk individuals due to cholecystectomy. A genetic susceptibility may, thus, be as "carcinogenic" in New World peoples as any known major environmental exposure; yet, while the risk has a genetic basis, its expression as gallbladder cancer is so delayed as to lead only very rarely to multiply-affected families. Estimates in this paper are derived in part from two studies of Mexican-Americans in Starr County and Laredo, Texas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear whether REST-VP16 expression is sufficient to cause formation of functional neurons either from neural stem cells or from heterologous stem cells. Here we show that the expression of REST-VP16 in myoblasts grown under muscle differentiation conditions blocked entry into the muscle differentiation pathway, countered endogenous REST/NRSF-dependent repression, activated the REST/NRSF target genes, and, surprisingly, activated other neuronal differentiation genes and converted the myoblasts to a physiologically active neuronal phenotype. Furthermore, in vitro differentiated neurons produced by REST-VP16-expressing myoblasts, when injected into mouse brain, survived, incorporated into the normal brain, and did not form tumors. This is the first instance in which myoblasts were converted to a neuronal phenotype. Our results suggest that direct activation of REST/NRSF target genes with a single transgene, REST-VP16, is sufficient to activate other terminal neuronal differentiation genes and to override the muscle differentiation pathways, and they suggest that this approach provides an efficient way of triggering neuronal differentiation in myoblasts and possibly other stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phospho-gluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci--isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of chi2 was significant (less than 0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA--6%--G6PDH--24%--6PGD, and ADA--29%--6PGD (30% when corrected for double crossovers), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant route of human immunodeficiency virus type 1 (HIV-1) transmission is infection across the vaginal mucosa. Epithelial cells, which form the primary barrier of protection against pathogens, are the first cell type at these mucosal tissues to encounter the virus but their role in HIV infection has not been clearly elucidated. Although mucosal epithelial cells express only low levels of the receptors required for successful HIV infection, productive infection does occur at these sites. The present work provides evidence to show that HIV exposure, without the need for productive infection, induces human cervical epithelial cells to produce Thymic Stromal Lymphopoietin (TSLP), an IL7-like cytokine, which potently activated human myeloid dendritic cells (mDC) to cause the homeostatic proliferation of autologous CD4+ T cells that serve as targets for HIV infection. Rhesus macaques inoculated with simian immunodeficiency virus (SIV) or with the simian-human immunodeficiency virus (SHIV) by the vaginal, oral or rectal route exhibited dramatic increases in: TSLP expression, DC and CD4+ T cell numbers, and viral replication, in the vaginal, oral, and rectal tissues, respectively within the first 2 weeks after virus exposure. Evidence obtained showed that HIV-mediated TSLP production by cervical cells is dependent upon the expression of the cell surface salivary agglutinin (SAG) protein gp340. Epithelial cells expressing gp340 exhibited HIV endocytosis and TSLP expression and genetic knockdown of gp340 or use of a gp340-blocking antibody inhibited TSLP expression by HIV. On the other hand, gp340-null epithelial cells failed to endocytose HIV and produce TSLP, but transfection of gp340 resulted in HIV-induced TSLP expression. Finally, HIV-induced TSLP expression was found to be mediated by TLR7/8 signaling and NF-kB activity because silencing these pathways or use of specific inhibitors abrogated TSLP expression in gp340-postive but not in gp340-null epithelial cells. Overall these studies identify TSLP as a key player in the acute phase of HIV-1 infection in permitting HIV to successfully maneuver the hostile vaginal mucosal microenvironment by creating a conducive environment for sustaining the small amount of virus that initially crosses the mucosal barrier allowing it to successfully cause infection and spread to distal compartments of the body

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INFLUENCE OF ANCHORING ON MISCARRIAGE RISK PERCEPTION ASSOCIATED WITH AMNIOCENTESIS Publication No. ___________ Regina Nuccio, BS Supervisory Professor: Claire N. Singletary, MS, CGC Amniocentesis is the most common invasive procedure performed during pregnancy (Eddleman, et al., 2006). One important factor that women consider when making a decision about amniocentesis is the risk of miscarriage associated with the procedure. People use heuristics such as anchoring, the action of using a prior belief regarding the magnitude of risk as a frame of reference for new information to be synthesized, to better understand risks that they encounter in their lives. This study aimed to determine a woman’s perception of miscarriage risk associated with amniocentesis before and after a genetic counseling session and to determine what factors are most likely to anchor a woman’s perception of miscarriage risk associated with amniocentesis. Most women perceived the risk as low or average pre-counseling and were likely to indicate the numeric risk of amniocentesis as <1% risk. A higher percentage of patients correctly identified the numeric risk as <1% post-counseling when compared to pre-counseling. However, the majority of patients’ feeling about the risk perception did not change after the genetic counseling session (60%), regardless of how they perceived the risk before discussing amniocentesis with a genetic counselor. Those whose risk perception did change after discussing amniocentesis with a genetic counselor showed a decreased risk perception (p<0.0001). Of the multitude of factors studied, only two showed significance: having a friend or relative with a personal or family history of a genetic disorder was associated with a lower risk perception (p=0.001) and having a child already was associated with a lower risk perception (p=0.038). The lack of significant factors may reflect the uniqueness of each patient’s heuristic framework and reinforces the importance of genetic counseling to elucidate individual concerns.