987 resultados para Tertullian, ca. 160-ca. 230


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Knowledge of past atmospheric pCO2 is important for evaluating the role of greenhouse gases in climate forcing. Ice core records show the tight correlation between climate change and pCO2, but records are limited to the past ~900 kyr. We present surface ocean pH and pCO2 data, reconstructed from boron isotopes in planktonic foraminifera over two full glacial cycles (0-140 and 300-420 kyr). The data co-vary strongly with the Vostok pCO2-record and demonstrate that the coupling between surface ocean chemistry and the atmosphere is recorded in marine archives, allowing for quantitative estimation of atmospheric pCO2 beyond the reach of ice cores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10?°C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R^2 = 0.67 - 0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2 - 3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed d18O of seawater (d18Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64 - 0.67) but not local precipitation (r = -0.10 to - 0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on d18Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed d18Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two SST records based on Mg/Ca of G. ruber (pink) from the continental slope off West Africa at 15°N and 12°N shed new light on the thermal bipolar seesaw pattern in the northeastern tropical Atlantic during periods of reduced Atlantic Meridional Overturning Circulation (AMOC) associated with Heinrich stadials H1 to H6. The two records indicate that the latitudinal position of the bipolar seesaw's zero-anomaly line, between cooling in the North and warming in the South, gradually shifted southward from H6 to H1. A conceptual model is presented that aims to provide a physically consistent mechanism for the southward migration of the seesaw's fulcrum. The conceptual model suggests latitudinal movements of the Intertropical Convergence Zone, driven by a combination of orbital-forced changes in the meridional temperature gradient within the realm of the Hadley cell and the expansion of the Northern Hemisphere cryosphere, as a major factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multidecadal variations in Atlantic sea surface temperatures (SST) influence the climate of the Northern Hemisphere. However, prior to the instrumental time period, information on multidecadal climate variability becomes limited, and there is a particular scarcity of sufficiently resolved SST reconstructions. Here, we present an eastern tropical North Atlantic reconstruction of SSTs based on foraminiferal (Globigerinoides ruber pink) Mg/Ca ratios that resolves multidecadal variability over the past 1700 years. Spectral power in the multidecadal band (50 to 70 years period) is significant over several time intervals suggesting that the Atlantic Multidecadal Oscillation (AMO) has been influencing local SST. Since our data exhibit high scatter the absence of multidecadal variability in the remaining record does not exclude the possibility that SST variations on this time scale might have been present without being detected in our data. Cooling by ~0.5 °C takes place between about AD 1250 and AD 1500; while this corresponds to the inception of the Little Ice Age (LIA), the end of the LIA is not reflected in our record and SST remains relatively low. This transition to cooler SSTs parallels the previously reconstructed shift in the North Atlantic Oscillation towards a low pre-20th century mean state and possibly reflects common solar forcing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.