1000 resultados para Teoria da matemática elementar
Resumo:
O objetivo deste artigo é contribuir para o conhecimento da história da formação de professores e pesquisadores de Matemática na Faculdade Nacional de Filosofia - FNFi. Descreve-se o processo de negociação para a escolha de professores estrangeiros para atuar no curso de Matemática, bem como a proposta curricular; identificam-se os primeiros alunos e discute-se a formação pedagógica do futuro professor. Mostram-se as dificuldades enfrentadas durante a Segunda Guerra Mundial, pelos matemáticos estrangeiros, bem como analisa-se a contribuição de alguns desses matemáticos para o desenvolvimento da pesquisa no país. Identificam-se os primeiros brasileiros, José Abdelhay e Leopoldo Nachbin, que tiveram um papel relevante no ensino e pesquisa matemática, nos anos iniciais do surgimento do cursos de bacharelado e licenciatura em Matemática na FNFi. O período analisado vai da criação da FNFi (1939) e estende-se até meados de 1950, quando começam os embates pela disputa de espaço acadêmico na área de Matemática.
Resumo:
Este texto objetiva oferecer uma breve panorâmica da teoria psicossociológica das representações sociais, estabelecendo algumas pontes com as teorias feministas de gênero. Nesse sentido, percorre as origens e fundamentos da teoria de Moscovici, as suas variações e alguns pontos de convergência com as teorias feministas.
Resumo:
In this paper we study the set of periods of holomorphic maps on compact manifolds, using the periodic Lefschetz numbers introduced by Dold and Llibre, which can be computed from the homology class of the map. We show that these numbers contain information about the existence of periodic points of a given period; and, if we assume the map to be transversal, then they give us the exact number of such periodic orbits. We apply this result to the complex projective space of dimension n and to some special type of Hopf surfaces, partially characterizing their set of periods. In the first case we also show that any holomorphic map of CP(n) of degree greater than one has infinitely many distinct periodic orbits, hence generalizing a theorem of Fornaess and Sibony. We then characterize the set of periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof of Baker's theorem.
Resumo:
A subclass of games with population monotonic allocation schemes is studied, namelygames with regular population monotonic allocation schemes (rpmas). We focus on theproperties of these games and we prove the coincidence between the core and both theDavis-Maschler bargaining set and the Mas-Colell bargaining set
Resumo:
L. S. Shapley, in his paper 'Cores of Convex Games', introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
We show that any cooperative TU game is the maximum of a finite collection of convex games. This max-convex decomposition can be refined by using convex games with non-negative dividends for all coalitions of at least two players. As a consequence of the above results we show that the class of modular games is a set of generators of the distributive lattice of all cooperative TU games. Finally, we characterize zero-monotonic games using a strong max-convex decomposition
Resumo:
The monotonic core of a cooperative game with transferable utility (T.U.-game) is the set formed by all its Population Monotonic Allocation Schemes. In this paper we show that this set always coincides with the core of a certain game associated to the initial game.
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
En aquest treball presentem dues caracteritzacions de dos valors diferents en el marc dels jocs coalicionals amb cooperació restringida. Les restriccions són introduïdes com una seqüència finita de particions del conjunt del jugadors, de manera que cada una d'elles eés més grollera que l'anterior, formant així una estructura amb diferents nivells d'unions a priori.
Resumo:
A static comparative study on set-solutions for cooperative TU games is carried out. The analysis focuses on studying the compatibility between two classical and reasonable properties introduced by Young (1985) in the context of single valued solutions, namely core-selection and coalitional monotonicity. As the main result, it is showed that coalitional monotonicity is not only incompatible with the core-selection property but also with the bargaining-selection property. This new impossibility result reinforces the tradeoff between these kinds of interesting and intuitive economic properties. Positive results about compatibility between desirable economic properties are given replacing the core selection requirement by the core-extension property.
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
[spa] En este artículo hallamos fórmulas para el nucleolo de juegos de asignación arbitrarios con dos compradores y dos vendedores. Se analizan cinco casos distintos, dependiendo de las entradas en la matriz de asignación. Los resultados se extienden a los casos de juegos de asignación de tipo 2 x m o m x 2.