944 resultados para Temperature range
Resumo:
We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease.
Resumo:
The recent global tropospheric temperature trend can be reproduced by climate models that are forced only by observed sea surface temperature (SST) anomalies. In this study, simulations with the Hamburg climate model (ECHAM) are compared to temperatures from microwave sounding units (MSU) and to reanalyses from the European Centre for Medium-Range Weather Forecasts. There is overall agreement of observed and simulated tropospheric temperature anomalies in many regions, in particular in the tropics and over the oceans, which lack conventional observing systems. This provides the opportunity to link physically different quantities, such as surface observations or analyses (SST) and satellite soundings (MSU) by means of a general circulation model. The proposed method can indicate inconsistencies between MSU temperatures and SSTs and has apparently done so. Differences between observed and simulated tropospheric temperature anomalies can partly be attributed to stratospheric aerosol variations due to major volcanic eruptions.
Resumo:
Long-range global climate forecasts were made by use of a model for predicting a tropical Pacific sea-surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of seven large climatic events of the 1970s to 1990s by this technique are in good agreement with observations over many regions of the globe.
Resumo:
Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ∼0.5 μA.
Resumo:
We present new radiative transfer simulations to support determination of sea surface temperature (SST) from Along Track Scanning Radiometer (ATSR) imagery. The simulations are to be used within the ATSR Reprocessing for Climate project. The simulations are based on the “Reference Forward Model” line-by-line model linked with a sea surface emissivity model that accounts for wind speed and temperature, and with a discrete ordinates scattering model (DISORT). Input to the forward model is a revised atmospheric profile dataset, based on full resolution ERA-40, with a wider range of high-latitude profiles to address known retrieval biases in those regions. Analysis of the radiative impacts of atmospheric trace gases shows that geographical and temporal variation of N2O, CH4, HNO3, and CFC-11 and CFC-12 have effects of order 0.05, 0.2, 0.1 K on the 3.7, 11, 12 μm channels respectively. In addition several trace gases, neglected in previous studies, are included using fixed profiles contributing ~ 0.04 K to top-of-atmosphere BTs. Comparison against observations for ATSR2 and AATSR indicates that forward model biases have been reduced from 0.2 to 0.5 K for previous simulations to ~ 0.1 K.
Resumo:
The optically stimulated luminescence (OSL) signal within quartz may be enhanced by thermal transfer during pre-heating. This may occur via a thermally induced charge transfer from low temperature traps to the OSL traps. Thermal transfer may affect both natural and artificially irradiated samples. The effect, as empirically measured via recuperation tests, is typically observed to be negligible for old samples (<1% of natural signal). However, thermal transfer remains a major concern in the dating of young samples as thermal decay and transfers of geologically unstable traps (typically in the TL range 160–280°C) may be incomplete. Upon pre-heating such a sample might undergo thermal transfer to the dating trap and result in a De overestimate. As a result, there has been a tendency for workers to adopt less rigorous pre-heats for young samples. We have investigated the pre-heat dependence of 23 young quartz samples from various depositional environments using pre-heats between 170°C and 300°C, employing the single aliquot regeneration (SAR) protocol. SAR De's were also calculated for 25 additional young quartz samples of different depositional environments and compared with previous multiple aliquot additive dose (MAAD) data. Results demonstrate no significant De dependence upon pre-heat temperatures. A close correspondence between MAAD data and the current SAR data for the samples tested is also illustrated.
Resumo:
With a wide range of applications benefiting from dense network air temperature observations but with limitations of costs, existing siting guidelines and risk of damage to sensors, new methods are required to gain a high resolution understanding of the spatio-temporal patterns of urban meteorological phenomena such as the urban heat island or precision farming needs. With the launch of a new generation of low cost sensors it is possible to deploy a network to monitor air temperature at finer spatial resolutions. Here we investigate the Aginova Sentinel Micro (ASM) sensor with a bespoke radiation shield (together < US$150) which can provide secure near-real-time air temperature data to a server utilising existing (or user deployed) Wireless Fidelity (Wi-Fi) networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors < ± 0.22 °C between -25 and 30 °C, with a time constant in ambient air of 110 ± 15 s. Subsequent field tests of it within the bespoke shield also had excellent performance (root-mean-square error = 0.13 °C) over a range of meteorological conditions relative to a traceable operational UK Met Office platinum resistance thermometer. These results indicate that the ASM and bespoke shield are more than fit-for-purpose for dense network deployment in urban areas at relatively low cost compared to existing observation techniques.
Resumo:
We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
BACKGROUND The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. RESULTS The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. CONCLUSION Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperature
Resumo:
Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.
Resumo:
The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.
Resumo:
A method for maintaining viable cultures of ectomycorrhizal Hebeloma strains in cold liquid culture medium is described. Isolates of Hebeloma spp., collected over a wide geographic range, were stored at 2 °C for a period of three years. All cultures survived this storage period, a greater time period and success rate than has previously been reported for the long term storage of ectomycorrhizal basidiomycetes. The method may prove useful for long-term storage of other basidiomycete genera.